ZEMBA RfP Attachment B

ZEMBA LCA Guidelines and Proposal Requirements

Contents

Introduction and Overview of Requirements	2
ZEMBA LCA Guidelines	3
LCA System Boundary	3
(1) Fuel LCA System Boundary	3
(2) Shipping Service LCA System Boundary	3
LCA Methodology	4
Proposal Requirements	6
(1) Fuel Pathway Description	6
(2) LCA Value Template	6
(3) Service-Related Information	7

Introduction and Overview of Requirements

ZEMBA requires best practice GHG emissions calculation, reporting, and verification for decarbonized maritime service attributes offered under this RfP. To achieve this, ZEMBA will require fuel sustainability certification as well as additional fuel deployment reporting and verification. Given that the International Maritime Organization (IMO) has not yet adopted a certifiable sustainability standard¹, ZEMBA will rely on existing fuel sustainability certification systems. The purpose of such certification is to independently and continuously verify the accurate representation of fuel GHG Life Cycle Assessment (LCA) values and that the fuel has been properly tracked throughout the full chain of custody, from the point of feedstock sourcing to the end-fate of the fuel. Additionally, the certification verifies that fuels minimize other negative social or environmental impacts, such as deforestation, biodiversity loss, or food insecurity.

At the point of environmental attribute delivery, the winning Bidder will be contractually required to meet the following conditions:

- (1) Winning Bidders must procure fuel from suppliers certified to a relevant sustainability standard by an independent certification body accredited to one of the following standard holders:
 - a. the Roundtable on Sustainable Biomaterials,
 - b. the International Sustainability and Carbon Certification (ISCC), or
 - c. another standard holder recognized by the European Commission.

Examples of relevant standards are RSB Global and ISCC Plus.

(2) Though the above-noted standards are highly aligned with the requirements of the IMO LCA Guidelines, Bidders must also provide additional data specific to the IMO LCA Guidelines and have such data audited by an independent, third-party verifier where ZEMBA deems necessary.

ZEMBA understands that certification may not yet be completed for all fuel producers supplying Respondents to this RfP.

At the point of proposal submission, Bidders are required to:

- (1) List the estimated LCA value and related sustainability certification the fuel producer has already obtained or is expected to obtain by the first delivery date *for each proposed fuel*, under the Bid Scope and Assurance tab section 4.1.3 in the RfP excel spreadsheet and
- (2) Provide, to the extent available, the following information *for each proposed fuel* in an attachment to the RfP excel spreadsheet:
 - a. Fuel Pathway Description
 - b. LCA Value Template
 - c. Service-Related Information

Proposal evaluation will include consideration of the extent to which the data was provided and any accompanying documentation, with a certified "Proof of Sustainability" or similar being looked upon most favourably. See below for details on what is required for each.

¹ If and when the IMO adopts a fuel sustainability certification standard and verification system to accompany the IMO LCA Guidelines, ZEMBA will consider whether and how to utilize it with respect to this and future RfPs.

ZEMBA LCA Guidelines

LCA System Boundary

The following emissions are considered within the LCA system boundary for the zero-emissions shipping service:

- Emissions from Fuel Consumption (based on fuel LCA value and fuel consumption)
- Emissions per TEU-mile (based on distance travelled and TEUs shipped on zero-emissions fuel)

See below for elaboration on the two elements of the LCA system boundary.

(1) Fuel LCA System Boundary

In alignment with the IMO LCA Guidelines², ZEMBA requires a Well-to-Wake (WtW) fuel LCA, which includes the emissions impacts from the following:

- Extraction, cultivation, or acquisition of feedstocks and raw materials
- Emissions from processing
- Emissions from transportation and distribution
- Emissions from the fuel in use (accounting for fuel slip)
- Annualized emissions from carbon stock changes caused by land-use change
- Annualized emissions savings from soil carbon accumulation via improved agricultural management
- Emissions savings from carbon dioxide capture and storage or utilization

As mentioned above, in the absence of a certifiable sustainability standard from the International Maritime Organization (IMO), ZEMBA will require use of existing sustainability certification systems - which largely align with and in some cases go beyond the requirements of the IMO LCA Guidelines - to assess, verify, and certify fuel LCA values.

To ensure full alignment with the IMO LCA guidelines and the capture of all emissions within the prescribed system boundary, ZEMBA requires disaggregated reporting and third-party verification of certain LCA values. These LCA values include the emissions impacts from the following:

- Emissions from fuel "slip", the fuel that escapes from the energy converter without being oxidized.
- Emissions credits from carbon dioxide capture and storage occurring on-board a vessel.

(2) Shipping Service LCA System Boundary

In addition to requiring certification of the zero emissions fuel, prior to attribute delivery, ZEMBA will require the reporting and verification of additional information related to the deployment of the decarbonized service to allow the calculation of the LCA values for the shipping service emissions profile.

²Contained in IMO Resolution MEPC376(80) – See Annex I

LCA Methodology

In order to achieve sustainability certification, suppliers must follow the LCA methodology outlined by one of the eligible fuel sustainability certification systems. Such methodologies are largely aligned with the IMO LCA Guidelines and include the following formula:

The WtW GHG emission factor (g CO_{2eq} / $MJ_{(LCV)}$ fuel or electricity) is calculated according to below equation

$\mathbf{GHG}_{\mathbf{WtW}} = \mathbf{GHG}_{\mathbf{WtT}} + \mathbf{GHG}_{\mathbf{TtW}} (\operatorname{in CO}_{2eq}/ \operatorname{MJ}_{(LCV)})$

Where:

Term	Units	Explanation
GHG _{wtT}	$gCO_{2eq}/\ MJ_{(LCV)}$	Total Well-to-Tank GHG upstream emissions per energy unit of the fuel provided to the ship
GHG _{TtW}	$gCO_{2eq}/\ MJ_{(LCV)}$	Total Tank-to-Wake GHG downstream emissions per energy unit from the utilization of the fuel or per energy unit of electricity used in a consumer on board the ship
GHG _{WtW}	$gCO_{2eq}/MJ_{(LCV)}$	Total Well-to-Wake GHG emissions per energy unit of the fuel (provided and utilized onboard a ship) or electricity used in a consumer on board the ship

However, ZEMBA will apply the following adjustments if necessary when comparing proposals:

Slip emissions and On-board CCS

Consistent with the IMO Guidelines, slip emissions and emissions credits from on-board carbon capture and storage (CCS) should be incorporated into the LCA value as follows:

$$GHG_{TrW} = \frac{\left(1 - \frac{C_{slip}}{100}\right) * (C_{fco2} * GWP_{co2} + C_{fcH4} * GWP_{cH4} + C_{fN20} * GWP_{N20}) + \left(\frac{C_{slip}}{100} * C_{sfx} * GWP_{fuelx}\right) - e_{occs}}{LCV}$$

Where:

Term	Units	Explanation
C _{fCO2}	g CO ₂ / g fuel	CO_2 emission "conversion" factor for emissions of the combustion and/or oxidation process of the fuel used by the ship (g CO_2 / g fuel delivered in the engine)
C _{fCH4}	g CH_4 / g fuel	CH_4 emission "conversion" factor for emissions of the combustion and/or oxidation process of the fuel used by the ship (g CH_4 / g fuel delivered in the engine) For LNG/CNG: $C_{fCH4} = 0$ (the C_{tlip} is covering the role of C_{fCH4})
C _{fN20}	g $\rm N_2O$ / g fuel	N_2O emission "conversion" factor for emissions of the combustion and/or oxidation process of the fuel used by the ship (g N_2O / g fuel delivered in the engine)
C_{sfx}	g GHG / g fuel	Factor accounting for the share of GHG in the components of the fuel (for LNG/CNG this value is 1.0)
LCV	MJ / g	Lower Calorific Value which is the amount of heat that would be released by the complete combustion of the fuel
e _{oCCS}	gCO_{2eq}/g fuel	Emission credit from carbon capture and storage, where capture of CO_2 occurs onboard. This should properly account for the emissions avoided through the capture and temporarily storage of emitted CO_2 , if CCS occurs onboard
$\underline{\mathbf{C}}_{slip}$	% total fuel mass (consumed in the energy converter)	Factor accounting for fuel (expressed in % of total fuel mass consumed in the energy converter) which escapes from the energy converter without being oxidized (including fuel that escapes from combustion chamber/oxidation process and from crankcase, as appropriate)
GWP _{CO2}	$g\ CO_{2eq}\ /\ g\ CO_{2}$	Global Warming Potential of $\rm CO_2$ over 100 years (based on the 5 TH IPCC Assessment Report)
GWP _{CH4}	$\rm g~CO_{2eq}/~g~CH_4$	Global Warming Potential of CH_4 over 100 years (based on the 5 TH IPCC Assessment Report)
GWP _{N20}	$g \: CO_{2\text{eq}} \: / \: g \: N_2 O$	Global Warming Potential of $\rm N_2O$ over 100 years (based on the $\rm 5^{TH}$ IPCC Assessment Report)
GWP _{fuelx}	$\rm g~CO_{2eq}/~g~GHG$	Global Warming Potential of GHG in the components of the fuel over 100 years (based on the 5th IPCC Assessment Report)

ZEMBA also requires the application of the following restrictions in calculating the LCA value:

<u>Emissions from Fuel Use</u>: Default emissions factors for fuel use from the IMO LCA Guidelines³ will be used when available to determine "emissions from fuel use" in the LCA value calculation. When default emissions factors are not provided in the IMO LCA Guidelines, default emissions factors from the FuelEU Maritime⁴ regulation will be used. When default emissions factors from neither the IMO LCA Guidelines nor FuelEU Maritime are not available, default emissions factors from EU Renewable Energy Directive (EU RED II)⁵ will be used.

Induced Land Use Change (ILUC)

For all the feedstocks which are not designated as waste, residue or by-product according to the ICAO CORSIA⁶ feedstock categorization framework (and thus have a value of ILUC = 0), the **positive default values** from ICAO CORSIA must be used.⁷ Negative ILUC values will not be considered.

³ Contained in Appendix II of IMO Resolution MEPC376(80) – Attached as Appendix I to this document.

⁴ See Annex II of Fuel EU Maritime Regulation – Attached as Appendix II to this document.

⁵ See Annex V and VI of the EU RED II Regulation -Attached as Appendix III to this document.

⁶ International Civil Aviation Organization (ICAO), Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)

⁷ CORSIA default ILUC values can be found here: <u>CORSIA Supporting Document "CORSIA Eligible Fuels_LCA_Methodology"</u> (icao.int)

Carbon Dioxide Capture and Sequestration:

Geological sequestration of CO_2 captured at a processing unit in the supply chain processing the fuel's raw materials and finished fuel products can be deducted from the LCA value of the fuel **up to a value of zero**, as long as all other fuel requirements are met.

Soil Carbon Sequestration:

Carbon accumulation in soil caused by improved agricultural management during the cultivation of feedstocks **cannot be credited** towards the LCA value of the fuel and is resultingly listed as "0 gCO2e/MJ" in ZEMBA's LCA Value Template.

Proposal Requirements

As stated in the Introduction to this document, Bidders are required to provide the following information for each proposed fuel, to the extent available, in an attachment to the RfP excel spreadsheet in the format described below:

- (1) Fuel Pathway Description
- (2) LCA Value Template
- (3) Service-Related Information

See below for instructions.

(1) Fuel Pathway Description

Bidders are required to clearly describe the fuel pathway, with the aim of providing, at a minimum, information on:

- 1. The type of feedstock and any other inputs used,
- 2. A description of the conversion process and technology used for producing the finished fuel,
- 3. Any other relevant information required to fully represent the fuel production process within the LCA system boundary, and
- 4. Fuel delivery and utilization, including fuel bunkering and intermediate transportation, storage, and distribution.

The fuel pathway description must include a description of each of the steps of the fuel life cycle. An example of a well-to-tank fuel system boundary is shown in Figure 1:

Figure 1: Well-to-Wake Fuel System Boundary

(2) LCA Value Template

Respondents are required to provide the following information in the RfP response, to the extent available and supported by documentation wherever possible. If documentation supporting this information is not available at the time the Response is submitted, provide an explanation of how the information was obtained or

estimated. Additionally, provide an explanation of how the Bidder is able to ensure such information will be available and certification obtained by the time attributes are to be delivered to ZEMBA members.

All LCA component values must follow the methodologies outlined by one of the sustainability standard holders noted in the section above.

	LCA value (g/CO2e/MJ fuel)	Source/Model/Reference
Fuel Life Cycle Emissions Factor (total)		
LCA Component Values:		
Emissions from Feedstock (total)		
ILUC		Required: ICAO CORSIA default value ⁸
Extraction/Acquisition/Cultivation		
Processing		
Emissions Credits from Biomass		
Growth		
Soil Carbon Sequestration	0	Not permitted under ZEMBA LCA Guidelines
Emissions from Feedstock Processing and		
Conversion Process		
Emissions from Fuel Use (total)		IMO, FuelEU Maritime, or EU RED II Default
		Factors
Emissions from Fuel Slippage		Required: IMO LCA Guidelines default value
Emissions from Transportation and		
Distribution (of the feedstock,		
intermediate products, or finished fuel)		
Emissions Credits from Carbon Dioxide		
Capture and Sequestration or Utilization		
(CCS) (total)		
Emissions Credits from CCS at		
Zero Emission Fuel Production		
Facility		
Emissions Credits from CCS on		Required: Use of IMO Guidelines for
vessel		modelling of CCS on board, if applicable

(3) Service-Related Information

As noted in the RfP, ZEMBA requires reporting and verification of the deployment of the decarbonized service, including through verification of the following data fields: (1) fuel bunkering, (2) fuel consumption, (3) cargo quantity in TEUs, and (4) distance travelled. Verification procedures will be developed in coordination with the winning bidder and will be carried out by a class society, e.g. Lloyds Register, American Bureau of Shipping, Det Norske Veritas, etc., on behalf of ZEMBA.

⁸ CORSIA default ILUC values can be found here: <u>CORSIA Supporting Document "CORSIA Eligible Fuels_LCA_Methodology"</u> (icao.int)

To support the development of ZEMBA's verification procures, please provide a qualitative description of the format in which you propose to provide data and supporting documentation to ZEMBA, what systems could be used to monitor, record, and store the required data, and how that data could be made available to a selected third-party verifier.

Data Category	Supporting Documentation	Data Decording (Storage (Marification
Proof of Fuel Delivery	Bunker Delivery Note	Recording/storage/verification
Fuel Consumption Values		
Cargo Quantity (#TEUs)		
Distance Travelled		

APPENDIX 2

INITIAL DEFAULT EMISSION FACTORS PER FUEL PATHWAY CODE

Order	Fuel type	Fuel Pathway Code	WtT GHG intensity (gCO _{2eq} /M J)	LCV (MJ/g)	Energy Converter	C _f CO ₂ (gCO ₂ /g fuel)	C _f CH₄ (gCH₄/g fuel)	C _f N ₂ O (gN ₂ O/g fuel)	C _{slip} /C _{fuq} (mass %)	e _c gCO _{2eq} /g fuel	TtW GHG intensity (gCO2eq/MJ)	NOTE
1	Heavy Fuel Oil (ISO 8217 Grades RME, RMG and RMK, 0.10 < S ≤ 0.50%)	HFO(VLSFO)_f_SR_gm	16.8	0.0402	ALL ICEs	3.114	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study
2	Heavy Fuel Oil (ISO 8217 Grades RME, RMG and RMK exceeding 0.50% S)	HFO(HSHFO)_f_SR_gm	14.9	0.0402	ALL ICEs	3.114	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study
3	Light Fuel Oil (ISO 8217 Grades RMA, RMB and RMD maximum 0.10% S)	LFO(ULSFO)_f_SR_gm		0.0412	ALL ICEs	3.151	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study
4	Light Fuel Oil (ISO 8217 Grades RMA, RMB and RMD, $0.10 < S \le$ 0.50%)	LFO(VLSFO)_f_SR_gm		0.0412	ALL ICEs	3.151	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study
5	Marine Diesel/Gas Oil (ISO 8217 Grades DMX, DMA, DMZ and DMB maximum 0.10 % S)	MDO/MGO(ULSFO)_f_SR _gm	17.7	0.0427	ALL ICEs	3.206	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study
6	Marine Diesel/Gas Oil (ISO 8217 Grades DMX, DMA, DMZ and DMB, $0.10 < S \le 0.50\%$)	MDO/MGO(VLSFO)_f_SR _gm		0.0427	ALL ICEs	3.206	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study
11	Liquified Petroleum Gas (Propane)	LPG(Propane)_f_SR_gm		0.0463	ALL ICEs	3.000	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study
21	Liquified Petroleum Gas (Butane)	LPG(Butane)_f_SR_gm		0.0457	ALL ICEs	3.030	0.00005	0.00018				Resolution MEPC.364(79) Fourth IMO GHG study

MEPC 80/7/4 Annex 1, page 46

Order	Fuel type	Fuel Pathway Code	WtT GHG intensity (gCO _{2eq} /MJ)	LCV (MJ/g)	Energy Converter	C _f CO ₂ (gCO ₂ /g fuel)	C _f CH₄ (gCH₄/g fuel)	C _f N ₂ O (gN ₂ O/g fuel)	C _{slip} /C _{fug} (mas s %)	ec gCO₂e ⊲/g fuel	TtW GHG intensity (gCO2eq/M J)	NOTE
					LNG Otto (dual fuel medium speed)				3.5/-			
31					LNG Otto (dual fuel slow speed)				1.7/-			Resolution MEPC.364(79) Fourth IMO GHG study
	Liquefied Natural Gas (Methane)	LNG_f_SLP_gm	0	0.0480	LNG Diesel (dual fuel slow speed)	2.750	0	0.00011	0.15/-			
					LBSI (Lean-Burn Spark- Ignited)				2.6/-			
					Steam Turbines and boilers				0.01/-			
33	Liquefied Natural Gas (Methane)	LNG_b_AD_gm			LNG Otto (dual fuel medium speed) LNG Otto (dual fuel slow speed) LNG Diesel (dual fuel slow speed) LBSI (Lean-Burn Spark- Ignited)	2.750						

					Steam Turbines and boilers				
62	Diesel (FAME)	FAME_b_TRE_gm_2ndge n	20.8	0.0372	ALL ICEs				
77	Renewable Diesel (HVO)	HVO_b_HD_gm_1stgen	14.9	0.044	ALL ICEs				
105	Hydrogon	H2 f SMP CCS am		0.12	ALL ICEs	0			
105	riydiogen	H2_f_SMR_CCS_gm		0.12	Fuel cell	0			
121	Ammonio	NH3_rN2_fH2_HB_gm		0.0196	ALL ICEs	0			
121	Ammonia			0.0100	Fuel cell	0			

ANNEX II

Default emission factors

The default emission factors contained in the table below shall be used for the determination of the GHG intensity index referred to in Annex I of this Regulation, except where companies diverge from those default emission factors in application of Article 10(4) and (5) of this Regulation.

In the table below:

- TBM stands for To Be Measured,
- N/A stands for Not Available,
- The dash means not applicable,
- E is established in accordance with the methodologies laid down in Directive
 (EU) 2018/2001, Part C of Annex V and Part B of Annex VI.

Where a cell indicates either TBM or N/A, unless a value is demonstrated in accordance with Article 10, the highest default value of the fuel class in the same column shall be used.

Where, for a particular fuel class, all cells in the same column indicate either TBM or N/A, unless a value is demonstrated in accordance with Article 10, the default value of the least favourable fossil fuel pathway shall be used. This rule does not apply to column 9, where TBM or N/A refers to non-available values for the fuel consumer. In case of no default value, a certified value in accordance with Article 10(5) should be used.

1	2	3	4	5	6	7	8	9
			WtT			TtW		
Fuel Class	Pathway name	LCV $\left[\frac{MJ}{g}\right]$	CO _{2eq WtT} [<u>gCO2eq</u>] <u>MJ</u>]	Fuel Consumer Unit Class	C _{fCO2} [gCO2 [gFue]]	$\frac{C_{f CH_4}}{[gFuel]}$	$\frac{C_{fN_2O}}{\left[\frac{gN_2O}{gFuel}\right]}$	C _{slip} As % of the mass of the fuel used by the engine
	HFO ISO 8217 Grades RME to RMK	0,0405	13,5	ALL ICEs	3,114	0,00005	0,00018	-
Fossil	LFO ISO 8217 Grades RMA to RMD	0,041	13,2	ALL ICEs	3,151	0,00005	0,00018	-
	MDO MGO ISO 8217 Grades DMX to DMB	0,0427	14,4	ALL ICEs	3,206	0,00005	0,00018	-

1	2	3	4	5	6	7	8	9
			WtT			TtW		
			18.5	LNG Otto (dual fuel medium speed)				3,1
	LNG	0,0491		LNG Otto (dual fuel slow speed)	2,750	0	0,00011	1,7
				LNG Diesel (dual fuel slow speed)				0,2
				LBSI				2,6 ¹
Fossil	LPG	0,046	7,8	ALL ICEs	3,030 Butane 3,000 Propane	TBM	TBM	N/A
	H2	0.12	132	Fuel Cells	0	0	-	-
	(natural gas)	- 7		ICE	0	0	TBM	
	NH3	0.0107	121	Fuel Cells	0	N/A	TBM	N/A
	(natural gas)	0,0186	121	ICE	0	N/A	TBM	N/A
	Methanol (natural gas)	0,0199	31,3	ALL ICEs	1,375	TBM	TBM	-

Figure extracted from the fourth IMO Greenhouse Gas Study: Fourth IMO GHG Study 2020
 Full report and annexes.pdf.

1	2	3	4	5	6	7	8	9
			WtT			TtW		
	Ethanol Production Pathways of Directive (EU) 2018/2001	Value as set out in Annex III of Directive (EU) 2018/2001		ALL ICEs	1,913	TBM	TBM	-
	Bio-diesel Production Pathways of Directive (EU) 2018/2001		$E - \frac{C_{fCO_2}}{LCV}$	ALL ICEs	2,834	TBM	TBM	-
	Hydrotreated Vegetable Oil (HVO) Production Pathways of Directive (EU) 2018/2001			ALL ICEs	3,115	0,00005	0,00018	-
Biofuels	Liquefied Bio- methane as transport fuel (Bio-LNG) Production			LNG Otto (dual fuel medium speed)	2,750	0	0,00011	3,1
				LNG Otto (dual fuel slow speed)				1,7
	Directive (EU) 2018/2001			LNG Diesel (dual fuels)				0,2
				LBSI				2,6
	Bio-methanol Production Pathways of Directive (EU) 2018/2001			ALL ICEs	1,375	TBM	TBM	-
	Other Production Pathways of Directive (EU) 2018/2001			ALL ICEs	3,115	0,00005	0,00018	-

1	2	3	4	5	6	7	8	9
			WtT			TtW		
Biofuels	Bio-H2 Production Pathways of	Value as set out in Annex III of	N/A	Fuel Cells	0	0	0	-
	Directive (EU) 2018/2001	(EU) 2018/2001		ICE	0	0	TBM	
	e-diesel	0,0427	Ref. to Directive (EU) 2018/2001)	ALL ICEs	3,206	0,00005	0,00018	-
	e-methanol	0,0199	Ref. to Directive (EU) 2018/2001)	All ICEs	1,375	0,00005	0,00018	-
	e-LNG	e-LNG 0,0491	Ref. To Directive (EU) 2018/2001)	LNG Otto (dual fuel medium speed)	2,750	0	0,00011	3,1
Renewable Fuels of Non- Biological				LNG Otto (dual fuel slow speed)				1,7
Origin (RFNBO)				LNG Diesel (dual fuels)				0,2
- e-Fuels				LBSI				2,6
	e-H2	0.12	Ref. to Directive	Fuel Cells	0	0	0	_
	• • • •		(EU) 2018/2001)	ICE	0	0	TBM	
				Fuel Cells	0	N/A	TBM	N/A
	e-NH3	0,0186	N/A	ICE	0	N/A	TBM	N/A
	e-LPG	N/A	N/A		N/A	N/A	N/A	N/A
	e-DME	N/A	N/A		N/A	N/A	N/A	-
Others	Electricity	-	EU ENERGY MIX	On-shore power supply (OPS)	-	-	-	-

Column 1 identifies the class of the fuels, namely fossils fuels, liquid biofuels, gaseous biofuels and e-fuels.

Column 2 identifies the name or the pathways of the relevant fuels within the class.

Column 3 contains the lower calorific value of the fuels in [MJ/g]. For liquid biofuels, values of energy content by weight (lower calorific value, MJ/kg) as set out in Annex III to Directive (EU) 2018/2001 shall be converted in MJ/g and used.

Column 4 contains the WtT GHG emission factors in [gCO_{2eq}/MJ]:

(a) For liquid biofuels, the default values shall be calculated by using the values of E established in accordance with the methodologies laid down in Directive (EU) 2018/2001, Part C of Annex V to that Directive for all liquid biofuels except bio-LNG and Part B of Annex VI to that Directive for bio-LNG, and on the basis of default values related to the particular biofuel used as a transport fuel and its production pathway, laid down in that Directive, Parts D and E of Annex VI to that Directive for bio-LNG. However, the values of E need to be adjusted by subtracting the ratio of the values contained in column 6 (C_f_CO₂) and column 3 (LCV). This is required under this Regulation, which separates the WtT and the TtW calculations, to avoid double counting of emissions;

(b) For RFNBO and other fuels not referred to in point (a) to be taken into account for the purpose referred to in Article 4(1) of this Regulation, default values are to be either calculated by using the methodology of the delegated act referred to in Article 28(5) of Directive (EU) 2018/2001, or, if applicable, a similar methodology if defined under a Union legal act concerning the internal markets in renewable and natural gases and in hydrogen, pursuant to Article 10(1) and (2) of this Regulation.

Column 5 identifies the main types/classes of fuel consumer units such as 2 and 4 strokes Internal Combustion Engines (ICE) Diesel or Otto cycle, Lean-Burn Spark-Ignited (LBSI) engines, fuel cells, etc.

Column 6 contains the emission factor C_f for CO_2 in [gCO₂/gfuel]. Emission factors values as specified in Regulation (EU) 2015/757 shall be used. For all those fuels not contained in Regulation (EU) 2015/757, the default values are specified in the table.

Column 7 contains the emission factor C_f for methane in [gCH₄/gfuel]. For LNG fuels, C_f for methane are set to zero.

Column 8 contains the emission factor C_f for nitrous oxide in [gN₂O/gfuel].

Column 9 identifies the part of fuel lost as fugitive and slipped emissions (C_{slip}) measured as % of the mass of fuel used by the specific fuel consumer unit. For fuels such as LNG for which the fugitive and slipped emissions exist, the amount of fugitive and slipped emissions as presented in the table is expressed in % of the mass of fuel used (Column 9). The values of C_{slip} in the table are calculated at 50 % of the full engine load.

ANNEX V

RULES FOR CALCULATING THE GREENHOUSE GAS IMPACT OF BIOFUELS, BIOLIQUIDS AND THEIR FOSSIL FUEL COMPARATORS

A. TYPICAL AND DEFAULT VALUES FOR BIOFUELS IF PRODUCED WITH NO NET CARBON EMISSIONS FROM LAND-USE CHANGE

Biofuel production pathway	Greenhouse gas emissions saving – typical value	Greenhouse gas emissions saving – default value
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler)	67 %	59 %
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler)	77 %	73 %
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*))	73 %	68 %
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*))	79 %	76 %
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*))	58 %	47 %
sugar beet ethanol (with biogas from slop, lignite as process fuel in CHP plant (*))	71 %	64 %
corn (maize) ethanol (natural gas as process fuel in con- ventional boiler)	48 %	40 %
corn (maize) ethanol, (natural gas as process fuel in CHP plant (*))	55 %	48 %
corn (maize) ethanol (lignite as process fuel in CHP plant (*))	40 %	28 %
corn (maize) ethanol (forest residues as process fuel in CHP plant (*))	69 %	68 %
other cereals excluding maize ethanol (natural gas as pro- cess fuel in conventional boiler)	47 %	38 %
other cereals excluding maize ethanol (natural gas as process fuel in CHP plant (*))	53 %	46 %
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*))	37 %	24 %
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*))	67 %	67 %

L 328/148

EN

Biofuel production pathway	Greenhouse gas emissions saving – typical value	Greenhouse gas emissions saving – default value	
sugar cane ethanol	70 %	70 %	
the part from renewable sources of ethyl-tertio-butyl-ether (ETBE)	Equal to that of the ethanol production pathway used		
the part from renewable sources of tertiary-amyl-ethyl- ether (TAEE)	Equal to that of the ethanol production pathway used		
rape seed biodiesel	52 %	47 %	
sunflower biodiesel	57 %	52 %	
soybean biodiesel	55 %	50 %	
palm oil biodiesel (open effluent pond)	32 %	19 %	
palm oil biodiesel (process with methane capture at oil mill)	51 %	45 %	
waste cooking oil biodiesel	88 %	84 %	
animal fats from rendering biodiesel (**)	84 %	78 %	
hydrotreated vegetable oil from rape seed	51 %	47 %	
hydrotreated vegetable oil from sunflower	58 %	54 %	
hydrotreated vegetable oil from soybean	55 %	51 %	
hydrotreated vegetable oil from palm oil (open effluent pond)	34 %	22 %	
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill)	53 %	49 %	
hydrotreated oil from waste cooking oil	87 %	83 %	
hydrotreated oil from animal fats from rendering (**)	83 %	77 %	
pure vegetable oil from rape seed	59 %	57 %	
pure vegetable oil from sunflower	65 %	64 %	
pure vegetable oil from soybean	63 %	61 %	
pure vegetable oil from palm oil (open effluent pond)	40 %	30 %	
pure vegetable oil from palm oil (process with methane capture at oil mill)	59 %	57 %	

21.12.2018

EN

Biofuel production pathway	Greenhouse gas emissions saving – typical value	Greenhouse gas emissions saving – default value
pure oil from waste cooking oil	98 %	98 %

(*) Default values for processes using CHP are valid only if all the process heat is supplied by CHP.

(**) Applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009 of the European Parliament and of the Council (¹), for which emissions related to hygenisation as part of the rendering are not considered.

B. ESTIMATED TYPICAL AND DEFAULT VALUES FOR FUTURE BIOFUELS THAT WERE NOT ON THE MARKET OR WERE ON THE MARKET ONLY IN NEGLIGIBLE QUANTITIES IN 2016, IF PRODUCED WITH NO NET CARBON EMISSIONS FROM LAND-USE CHANGE

Biofuel production pathway	Greenhouse gas emissions saving - typical value	Greenhouse gas emissions saving - default value
wheat straw ethanol	85 %	83 %
waste wood Fischer-Tropsch diesel in free-standing plant	85 %	85 %
farmed wood Fischer-Tropsch diesel in free-standing plant	82 %	82 %
waste wood Fischer-Tropsch petrol in free-standing plant	85 %	85 %
farmed wood Fischer-Tropsch petrol in free-standing plant	82 %	82 %
waste wood dimethylether (DME) in free-standing plant	86 %	86 %
farmed wood dimethylether (DME) in free-standing plant	83 %	83 %
waste wood methanol in free-standing plant	86 %	86 %
farmed wood methanol in free-standing plant	83 %	83 %
Fischer-Tropsch diesel from black-liquor gasification inte- grated with pulp mill	89 %	89 %
Fischer-Tropsch petrol from black-liquor gasification inte- grated with pulp mill	89 %	89 %
dimethylether (DME) from black-liquor gasification inte- grated with pulp mill	89 %	89 %
Methanol from black-liquor gasification integrated with pulp mill	89 %	89 %

the part from renewable sources of methyl-tertio-butylether (MTBE) Equal to that of the methanol production pathway used

^{(&}lt;sup>1</sup>) Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation) (OJ L 300, 14.11.2009, p. 1).

L 328/150 EN

C. METHODOLOGY

- 1. Greenhouse gas emissions from the production and use of transport fuels, biofuels and bioliquids shall be calculated as follows:
 - (a) greenhouse gas emissions from the production and use of biofuels shall be calculated as:

 $E = e_{ec} + e_{1} + e_{p} + e_{td} + e_{u} - e_{sca} - e_{ccs} - e_{ccr},$

where

E	=	total emissions from the use of the fuel;
e _{ec}	=	emissions from the extraction or cultivation of raw materials;
e ₁	Ш	annualised emissions from carbon stock changes caused by land-use change;
e _p	Ш	emissions from processing;
e _{td}	=	emissions from transport and distribution;
e _u	=	emissions from the fuel in use;
e _{sca}	=	emission savings from soil carbon accumulation via improved agricultural management;
e _{ccs}	=	emission savings from CO ₂ capture and geological storage; and
e _{ccr}	=	emission savings from CO ₂ capture and replacement.

Emissions from the manufacture of machinery and equipment shall not be taken into account.

- (b) Greenhouse gas emissions from the production and use of bioliquids shall be calculated as for biofuels (E), but with the extension necessary for including the energy conversion to electricity and/or heat and cooling produced, as follows:
 - (i) For energy installations delivering only heat:

$$EC_h = \frac{E}{\eta_h}$$

(ii) For energy installations delivering only electricity:

$$EC_{el} = \frac{E}{\eta_{el}}$$

where

 EC_{hel} = Total greenhouse gas emissions from the final energy commodity.

E = Total greenhouse gas emissions of the bioliquid before end-conversion.

- η_{el} = The electrical efficiency, defined as the annual electricity produced divided by the annual bioliquid input based on its energy content.
- η_h = The heat efficiency, defined as the annual useful heat output divided by the annual bioliquid input based on its energy content.
- (iii) For the electricity or mechanical energy coming from energy installations delivering useful heat together with electricity and/or mechanical energy:

$$EC_{el} = \frac{E}{\eta_{el}} \left(\frac{C_{el} \cdot \eta_{el}}{C_{el} \cdot \eta_{el} + C_h \cdot \eta_h} \right)$$

(iv) For the useful heat coming from energy installations delivering heat together with electricity and/or mechanical energy:

$$EC_{h} = \frac{E}{\eta_{h}} \left(\frac{C_{h} \cdot \eta_{h}}{C_{el} \cdot \eta_{el} + C_{h} \cdot \eta_{h}} \right)$$

where:

- EC_{hel} = Total greenhouse gas emissions from the final energy commodity.
- E = Total greenhouse gas emissions of the bioliquid before end-conversion.
- η_{el} = The electrical efficiency, defined as the annual electricity produced divided by the annual fuel input based on its energy content.
- η_h = The heat efficiency, defined as the annual useful heat output divided by the annual fuel input based on its energy content.
- C_{el} = Fraction of exergy in the electricity, and/or mechanical energy, set to 100 % (C_{el} = 1).
- C_h = Carnot efficiency (fraction of exergy in the useful heat).

The Carnot efficiency, C_h, for useful heat at different temperatures is defined as:

$$C_h = \frac{T_h - T_0}{T_h}$$

where

 T_{h} = Temperature, measured in absolute temperature (kelvin) of the useful heat at point of delivery.

 T_0 = Temperature of surroundings, set at 273,15 kelvin (equal to 0 °C)

If the excess heat is exported for heating of buildings, at a temperature below 150 °C (423,15 kelvin), C_h can alternatively be defined as follows:

 C_h = Carnot efficiency in heat at 150 °C (423,15 kelvin), which is: 0,3546

For the purposes of that calculation, the following definitions apply:

- (a) 'cogeneration' means the simultaneous generation in one process of thermal energy and electricity and/or mechanical energy;
- (b) 'useful heat' means heat generated to satisfy an economical justifiable demand for heat, for heating and cooling purposes;
- (c) 'economically justifiable demand' means the demand that does not exceed the needs for heat or cooling and which would otherwise be satisfied at market conditions.
- 2. Greenhouse gas emissions from biofuels and bioliquids shall be expressed as follows:
 - (a) greenhouse gas emissions from biofuels, E, shall be expressed in terms of grams of CO₂ equivalent per MJ of fuel, g CO₂eq/MJ.
 - (b) greenhouse gas emissions from bioliquids, EC, in terms of grams of CO₂ equivalent per MJ of final energy commodity (heat or electricity), g CO₂eq/MJ.

When heating and cooling are co-generated with electricity, emissions shall be allocated between heat and electricity (as under 1(b)), irrespective if the heat is used for actual heating purposes or for cooling (¹).

^{(&}lt;sup>1</sup>) Heat or waste heat is used to generate cooling (chilled air or water) through absorption chillers. Therefore, it is appropriate to calculate only the emissions associated to the heat produced per MJ of heat, irrespectively if the end-use of the heat is actual heating or cooling via absorption chillers.

L 328/152 EN

21.12.2018

Where the greenhouse gas emissions from the extraction or cultivation of raw materials e_{ec} are expressed in unit g CO₂eq/dry-ton of feedstock, the conversion to grams of CO₂ equivalent per MJ of fuel, g CO₂eq/MJ, shall be calculated as follows (¹):

$$e_{ec}fuel_{a}\left[\frac{gCO_{2}eq}{MJ fuel}\right]_{ec} = \frac{e_{ec}feedstock_{a}\left[\frac{gCO_{2}eq}{t_{dry}}\right]}{LHV_{a}\left[\frac{MJ feedstock}{t_{dry} feedstock}\right]} \times Fuel feedstock factor_{a} \times Allocation factor fuel_{a}$$

where

Allocation factor fuel_a =
$$\left[\frac{\text{Energy in fuel}}{\text{Energy fuel} + \text{Energy in co-products}}\right]$$

Fuel feedstock factor_{*a*} = [Ratio of MJ feedstock required to make 1 MJ fuel]

Emissions per dry-ton feedstock shall be calculated as follows:

$$e_{ec} feedstock_{a} \left[\frac{gCO_{2}eq}{t_{dyy}} \right] = \frac{e_{ec} feedstock_{a} \left[\frac{gCO_{2}eq}{t_{moist}} \right]}{(1 - moisture \ content)}$$

- 3. Greenhouse gas emissions savings from biofuels and bioliquids shall be calculated as follows:
 - (a) greenhouse gas emissions savings from biofuels:

$$SAVING = (E_{F(t)} - E_B)/E_{F(t)},$$

where

E _B	=	total emissions from the biofuel; and
E _{F(t)}	П	total emissions from the fossil fuel comparator for transport

(b) greenhouse gas emissions savings from heat and cooling, and electricity being generated from bioliquids:

SAVING = $(EC_{F(h\&c,el)} - EC_{B(h\&c,el)})/EC_{F(h\&c,el)}$,

where

 $EC_{B(h\&c,el)}$ = total emissions from the heat or electricity; and

- $EC_{F(h\&c,e)}$ = total emissions from the fossil fuel comparator for useful heat or electricity.
- 4. The greenhouse gases taken into account for the purposes of point 1 shall be CO₂, N₂O and CH₄. For the purposes of calculating CO₂ equivalence, those gases shall be valued as follows:

CO ₂	:	1
N ₂ O	:	298
CH ₄	:	25

5. Emissions from the extraction or cultivation of raw materials, e_{ec} , shall include emissions from the extraction or cultivation process itself; from the collection, drying and storage of raw materials; from waste and leakages; and from the production of chemicals or products used in extraction or cultivation. Capture of CO₂ in the cultivation of raw materials shall be excluded. Estimates of emissions from agriculture biomass cultivation may be derived from

^{(&}lt;sup>1</sup>) The formula for calculating greenhouse gas emissions from the extraction or cultivation of raw materials e_{cc} describes cases where feedstock is converted into biofuels in one step. For more complex supply chains, adjustments are needed for calculating greenhouse gas emissions from the extraction or cultivation of raw materials e_{cc} for intermediate products.

21.12.2018 EN

the use of regional averages for cultivation emissions included in the reports referred to in Article 31(4) or the information on the disaggregated default values for cultivation emissions included in this Annex, as an alternative to using actual values. In the absence of relevant information in those reports it is allowed to calculate averages based on local farming practises based for instance on data of a group of farms, as an alternative to using actual values.

- 6. For the purposes of the calculation referred to in point 1(a), greenhouse gas emissions savings from improved agriculture management, e_{sca}, such as shifting to reduced or zero-tillage, improved crop/rotation, the use of cover crops, including crop residue management, and the use of organic soil improver (e.g. compost, manure fermentation digestate), shall be taken into account only if solid and verifiable evidence is provided that the soil carbon has increased or that it is reasonable to expect to have increased over the period in which the raw materials concerned were cultivated while taking into account the emissions where such practices lead to increased fertiliser and herbicide use (¹).
- 7. Annualised emissions from carbon stock changes caused by land-use change, e₁, shall be calculated by dividing total emissions equally over 20 years. For the calculation of those emissions, the following rule shall be applied:

$$e_1 = (CS_R - CS_A) \times 3,664 \times 1/20 \times 1/P - e_B, (^2)$$

where

e ₁	=	annualised greenhouse gas emissions from carbon stock change due to land-use change (measured as mass (grams) of CO ₂ -equivalent per unit of biofuel or bioliquid energy (megajoules)). 'Cropland' (³) and 'perennial cropland' (⁴) shall be regarded as one land use;
CS _R	=	the carbon stock per unit area associated with the reference land-use (measured as mass (tonnes) of car- bon per unit area, including both soil and vegetation). The reference land-use shall be the land-use in January 2008 or 20 years before the raw material was obtained, whichever was the later;
CS _A	=	the carbon stock per unit area associated with the actual land-use (measured as mass (tonnes) of carbon per unit area, including both soil and vegetation). In cases where the carbon stock accumulates over more than one year, the value attributed to CS_A shall be the estimated stock per unit area after 20 years or when the crop reaches maturity, whichever the earlier;
Р	=	the productivity of the crop (measured as biofuel or bioliquid energy per unit area per year) and
e _B	=	bonus of 29 g CO ₂ eq/MJ biofuel or bioliquid if biomass is obtained from restored degraded land under the conditions laid down in point 8.

- 8. The bonus of 29 g CO_2eq/MJ shall be attributed if evidence is provided that the land:
 - (a) was not in use for agriculture or any other activity in January 2008; and
 - (b) is severely degraded land, including such land that was formerly in agricultural use.

The bonus of 29 g CO_2eq/MJ shall apply for a period of up to 20 years from the date of conversion of the land to agricultural use, provided that a steady increase in carbon stocks as well as a sizable reduction in erosion phenomena for land falling under (b) are ensured.

^{(&}lt;sup>1</sup>) Measurements of soil carbon can constitute such evidence, e.g. by a first measurement in advance of the cultivation and subsequent ones at regular intervals several years apart. In such a case, before the second measurement is available, increase in soil carbon would be estimated on the basis of representative experiments or soil models. From the second measurement onwards, the measurements would constitute the basis for determining the existence of an increase in soil carbon and its magnitude.

⁽²⁾ The quotient obtained by dividing the molecular weight of CO_2 (44,010 g/mol) by the molecular weight of carbon (12,011 g/mol) is equal to 3,664.

^{(&}lt;sup>3</sup>) Cropland as defined by IPCC.

 $[\]dot{(')}$ Perennial crops are defined as multi-annual crops, the stem of which is usually not annually harvested such as short rotation coppice and oil palm.

L 328/154 EN

- 9. 'Severely degraded land' means land that, for a significant period of time, has either been significantly salinated or presented significantly low organic matter content and has been severely eroded.
- 10. The Commission shall review, by 31 December 2020, guidelines for the calculation of land carbon stocks (¹) drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories volume 4 and in accordance with Regulation (EU) No 525/2013 and Regulation (EU) 2018/841 of the European Parliament and of the Council (²). The Commission guidelines shall serve as the basis for the calculation of land carbon stocks for the purposes of this Directive.
- 11. Emissions from processing, e_p , shall include emissions from the processing itself; from waste and leakages; and from the production of chemicals or products used in processing including the CO₂ emissions corresponding to the carbon contents of fossil inputs, whether or not actually combusted in the process.

In accounting for the consumption of electricity not produced within the fuel production plant, the greenhouse gas emissions intensity of the production and distribution of that electricity shall be assumed to be equal to the average emission intensity of the production and distribution of electricity in a defined region. By way of derogation from this rule, producers may use an average value for an individual electricity production plant for electricity produced by that plant, if that plant is not connected to the electricity grid.

Emissions from processing shall include emissions from drying of interim products and materials where relevant.

- 12. Emissions from transport and distribution, e_{td} , shall include emissions from the transport of raw and semi-finished materials and from the storage and distribution of finished materials. Emissions from transport and distribution to be taken into account under point 5 shall not be covered by this point.
- 13. Emissions of the fuel in use, e_{μ} , shall be taken to be zero for biofuels and bioliquids.

Emissions of non-CO₂ greenhouse gases (N₂O and CH₄) of the fuel in use shall be included in the e_u factor for bioliquids.

- 14. Emission savings from CO_2 capture and geological storage, e_{ccs} , that have not already been accounted for in e_p , shall be limited to emissions avoided through the capture and storage of emitted CO_2 directly related to the extraction, transport, processing and distribution of fuel if stored in compliance with Directive 2009/31/EC of the European Parliament and of the Council (³).
- 15. Emission savings from CO_2 capture and replacement, e_{ccr} , shall be related directly to the production of biofuel or bioliquid they are attributed to, and shall be limited to emissions avoided through the capture of CO_2 of which the carbon originates from biomass and which is used to replace fossil-derived CO_2 in production of commercial products and services.
- 16. Where a cogeneration unit providing heat and/or electricity to a fuel production process for which emissions are being calculated produces excess electricity and/or excess useful heat, the greenhouse gas emissions shall be divided between the electricity and the useful heat according to the temperature of the heat (which reflects the usefulness (utility) of the heat). The useful part of the heat is found by multiplying its energy content with the Carnot efficiency, C_h, calculated as follows:

$$C_h = \frac{T_h - T_0}{T_h}$$

where

- $T_{\rm h}$ = Temperature, measured in absolute temperature (kelvin) of the useful heat at point of delivery.
- T_0 = Temperature of surroundings, set at 273,15 kelvin (equal to 0 °C)

^{(&}lt;sup>1</sup>) Commission Decision 2010/335/EU of 10 June 2010 on guidelines for the calculation of land carbon stocks for the purpose of Annex V to Directive 2009/28/EC (OJ L 151, 17.6.2010, p. 19).

 ^{(&}lt;sup>2</sup>) Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (OJ L 156, 19.6.2018, p. 1).
 (³) Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and

⁽³⁾ Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006 (OJ L 140, 5.6.2009, p. 114).

21.12.2018 EN

If the excess heat is exported for heating of buildings, at a temperature below 150 °C (423,15 kelvin), C_h can alternatively be defined as follows:

 C_{h} = Carnot efficiency in heat at 150 °C (423,15 kelvin), which is: 0,3546

For the purposes of that calculation, the actual efficiencies shall be used, defined as the annual mechanical energy, electricity and heat produced respectively divided by the annual energy input.

For the purposes of that calculation, the following definitions apply:

- (a) 'cogeneration' shall mean the simultaneous generation in one process of thermal energy and electrical and/or mechanical energy;
- (b) 'useful heat' shall mean heat generated to satisfy an economical justifiable demand for heat, for heating or cooling purposes;
- (c) 'economically justifiable demand' shall mean the demand that does not exceed the needs for heat or cooling and which would otherwise be satisfied at market conditions.
- 17. Where a fuel production process produces, in combination, the fuel for which emissions are being calculated and one or more other products (co-products), greenhouse gas emissions shall be divided between the fuel or its intermediate product and the co-products in proportion to their energy content (determined by lower heating value in the case of co-products other than electricity and heat). The greenhouse gas intensity of excess useful heat or excess electricity is the same as the greenhouse gas intensity of heat or electricity delivered to the fuel production process and is determined from calculating the greenhouse intensity of all inputs and emissions, including the feedstock and CH₄ and N₂O emissions, to and from the cogeneration unit, boiler or other apparatus delivering heat or electricity to the fuel production process. In the case of cogeneration of electricity and heat, the calculation is performed following point 16.
- 18. For the purposes of the calculation referred to in point 17, the emissions to be divided shall be $e_{ec} + e_l + e_{sca} +$ those fractions of e_p , e_{td} , e_{ccs} , and e_{ccr} that take place up to and including the process step at which a co-product is produced. If any allocation to co-products has taken place at an earlier process step in the life-cycle, the fraction of those emissions assigned in the last such process step to the intermediate fuel product shall be used for those purposes instead of the total of those emissions.

In the case of biofuels and bioliquids, all co-products shall be taken into account for the purposes of that calculation. No emissions shall be allocated to wastes and residues. Co-products that have a negative energy content shall be considered to have an energy content of zero for the purposes of the calculation.

Wastes and residues, including tree tops and branches, straw, husks, cobs and nut shells, and residues from processing, including crude glycerine (glycerine that is not refined) and bagasse, shall be considered to have zero life-cycle greenhouse gas emissions up to the process of collection of those materials irrespectively of whether they are processed to interim products before being transformed into the final product.

In the case of fuels produced in refineries, other than the combination of processing plants with boilers or cogeneration units providing heat and/or electricity to the processing plant, the unit of analysis for the purposes of the calculation referred to in point 17 shall be the refinery.

19. For biofuels, for the purposes of the calculation referred to in point 3, the fossil fuel comparator $E_{F(t)}$ shall be 94 g CO₂eq/MJ.

For bioliquids used for the production of electricity, for the purposes of the calculation referred to in point 3, the fossil fuel comparator $EC_{F(e)}$ shall be 183 g CO_2eq/MJ .

For bioliquids used for the production of useful heat, as well as for the production of heating and/or cooling, for the purposes of the calculation referred to in point 3, the fossil fuel comparator $EC_{F(h&c)}$ shall be 80 g CO_2eq/MJ .

L 328/156 EN

D. DISAGGREGATED DEFAULT VALUES FOR BIOFUELS AND BIOLIQUIDS

Disaggregated default values for cultivation: 'e_{ec}' as defined in Part C of this Annex, including soil N₂O emissions

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
sugar beet ethanol	9,6	9,6
corn (maize) ethanol	25,5	25,5
other cereals excluding corn (maize) ethanol	27,0	27,0
sugar cane ethanol	17,1	17,1
the part from renewable sources of ETBE	Equal to that of the ethanol j	production pathway used
the part from renewable sources of TAEE	Equal to that of the ethanol j	production pathway used
rape seed biodiesel	32,0	32,0
sunflower biodiesel	26,1	26,1
soybean biodiesel	21,2	21,2
palm oil biodiesel	26,2	26,2
waste cooking oil biodiesel	0	0
animal fats from rendering biodiesel (**)	0	0
hydrotreated vegetable oil from rape seed	33,4	33,4
hydrotreated vegetable oil from sunflower	26,9	26,9
hydrotreated vegetable oil from soybean	22,1	22,1
hydrotreated vegetable oil from palm oil	27,4	27,4
hydrotreated oil from waste cooking oil	0	0
hydrotreated oil from animal fats from rendering (**)	0	0
pure vegetable oil from rape seed	33,4	33,4
pure vegetable oil from sunflower	27,2	27,2
pure vegetable oil from soybean	22,2	22,2
pure vegetable oil from palm oil	27,1	27,1
pure oil from waste cooking oil	0	0

(**) Applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009, for which emissions related to hygenisation as part of the rendering are not considered.

21.12.2018 EN

Disaggregated default values for cultivation: e_{ec} – for soil N_2O emissions only (these are already included in the disaggregated values for cultivation emissions in the e_{ec} table)

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
sugar beet ethanol	4,9	4,9
corn (maize) ethanol	13,7	13,7
other cereals excluding corn (maize) ethanol	14,1	14,1
sugar cane ethanol	2,1	2,1
the part from renewable sources of ETBE	Equal to that of the ethanol j	production pathway used
the part from renewable sources of TAEE	Equal to that of the ethanol j	production pathway used
rape seed biodiesel	17,6	17,6
sunflower biodiesel	12,2	12,2
soybean biodiesel	13,4	13,4
palm oil biodiesel	16,5	16,5
waste cooking oil biodiesel	0	0
animal fats from rendering biodiesel (**)	0	0
hydrotreated vegetable oil from rape seed	18,0	18,0
hydrotreated vegetable oil from sunflower	12,5	12,5
hydrotreated vegetable oil from soybean	13,7	13,7
hydrotreated vegetable oil from palm oil	16,9	16,9
hydrotreated oil from waste cooking oil	0	0
hydrotreated oil from animal fats from rendering (**)	0	0
pure vegetable oil from rape seed	17,6	17,6
pure vegetable oil from sunflower	12,2	12,2
pure vegetable oil from soybean	13,4	13,4
pure vegetable oil from palm oil	16,5	16,5
pure oil from waste cooking oil	0	0

(**) Note: applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009, for which emissions related to hygenisation as part of the rendering are not considered.

L 328/158 EN

Disaggregated default values for processing: 'e_p' as defined in Part C of this Annex

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler)	18,8	26,3
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler)	9,7	13,6
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*))	13,2	18,5
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*))	7,6	10,6
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*))	27,4	38,3
sugar beet ethanol (with biogas from slop, lignite as pro- cess fuel in CHP plant (*))	15,7	22,0
corn (maize) ethanol (natural gas as process fuel in con- ventional boiler)	20,8	29,1
corn (maize) ethanol, (natural gas as process fuel in CHP plant (*))	14,8	20,8
corn (maize) ethanol (lignite as process fuel in CHP plant (*))	28,6	40,1
corn (maize) ethanol (forest residues as process fuel in CHP plant (*))	1,8	2,6
other cereals excluding maize ethanol (natural gas as pro- cess fuel in conventional boiler)	21,0	29,3
other cereals excluding maize ethanol (natural gas as pro- cess fuel in CHP plant (*))	15,1	21,1
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*))	30,3	42,5
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*))	1,5	2,2
sugar cane ethanol	1,3	1,8
the part from renewable sources of ETBE	Equal to that of the ethanol p	production pathway used

21.12.2018

EN

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
the part from renewable sources of TAEE	Equal to that of the ethanol production pathway used	
rape seed biodiesel	11,7	16,3
sunflower biodiesel	11,8	16,5
soybean biodiesel	12,1	16,9
palm oil biodiesel (open effluent pond)	30,4	42,6
palm oil biodiesel (process with methane capture at oil mill)	13,2	18,5
waste cooking oil biodiesel	9,3	13,0
animal fats from rendering biodiesel (**)	13,6	19,1
hydrotreated vegetable oil from rape seed	10,7	15,0
hydrotreated vegetable oil from sunflower	10,5	14,7
hydrotreated vegetable oil from soybean	10,9	15,2
hydrotreated vegetable oil from palm oil (open effluent pond)	27,8	38,9
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill)	9,7	13,6
hydrotreated oil from waste cooking oil	10,2	14,3
hydrotreated oil from animal fats from rendering (**)	14,5	20,3
pure vegetable oil from rape seed	3,7	5.2
pure vegetable oil from sunflower	3,8	5,4
pure vegetable oil from soybean	4,2	5,9
pure vegetable oil from palm oil (open effluent pond)	22,6	31,7
pure vegetable oil from palm oil (process with methane capture at oil mill)	4,7	6,5
pure oil from waste cooking oil	0,6	0,8

(*) Default values for processes using CHP are valid only if all the process heat is supplied by CHP.
 (**) Note: applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009, for which emissions related to hygenisation as part of the rendering are not considered.

L 328/160 EN

Disaggregated default values for oil extraction only (these are already included in the disaggregated values for processing emissions in the ' e_p ' table)

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
rape seed biodiesel	3,0	4,2
sunflower biodiesel	2,9	4,0
soybean biodiesel	3,2	4,4
palm oil biodiesel (open effluent pond)	20,9	29,2
palm oil biodiesel (process with methane capture at oil mill)	3,7	5,1
waste cooking oil biodiesel	0	0
animal fats from rendering biodiesel (**)	4,3	6,1
hydrotreated vegetable oil from rape seed	3,1	4,4
hydrotreated vegetable oil from sunflower	3,0	4,1
hydrotreated vegetable oil from soybean	3,3	4,6
hydrotreated vegetable oil from palm oil (open effluent pond)	21,9	30,7
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill)	3,8	5,4
hydrotreated oil from waste cooking oil	0	0
hydrotreated oil from animal fats from rendering (**)	4,3	6,0
pure vegetable oil from rape seed	3,1	4,4
pure vegetable oil from sunflower	3,0	4,2
pure vegetable oil from soybean	3,4	4,7
pure vegetable oil from palm oil (open effluent pond)	21,8	30,5
pure vegetable oil from palm oil (process with methane capture at oil mill)	3,8	5,3
pure oil from waste cooking oil	0	0

(**) Note: applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009, for which emissions related to hygenisation as part of the rendering are not considered.

21.12.2018 EN

Disaggregated default values for transport and distribution: ' e_{td} ' as defined in Part C of this Annex

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler)	2,3	2,3
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler)	2,3	2,3
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*))	2,3	2,3
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*))	2,3	2,3
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*))	2,3	2,3
sugar beet ethanol (with biogas from slop, lignite as pro- cess fuel in CHP plant (*))	2,3	2,3
corn (maize) ethanol (natural gas as process fuel in CHP plant (*))	2,2	2,2
corn (maize) ethanol (natural gas as process fuel in con- ventional boiler)	2,2	2,2
corn (maize) ethanol (lignite as process fuel in CHP plant (*))	2,2	2,2
corn (maize) ethanol (forest residues as process fuel in CHP plant (*))	2,2	2,2
other cereals excluding maize ethanol (natural gas as pro- cess fuel in conventional boiler)	2,2	2,2
other cereals excluding maize ethanol (natural gas as pro- cess fuel in CHP plant (*))	2,2	2,2
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*))	2,2	2,2
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*))	2,2	2,2
sugar cane ethanol	9,7	9,7
the part from renewable sources of ETBE	Equal to that of the ethanol production pathway used	

L 328/162

EN

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)	
the part from renewable sources of TAEE	Equal to that of the ethanol production pathway used		
rape seed biodiesel	1,8	1,8	
sunflower biodiesel	2,1	2,1	
soybean biodiesel	8,9	8,9	
palm oil biodiesel (open effluent pond)	6,9	6,9	
palm oil biodiesel (process with methane capture at oil mill)	6,9	6,9	
waste cooking oil biodiesel	1,9	1,9	
animal fats from rendering biodiesel (**)	1,7	1,7	
hydrotreated vegetable oil from rape seed	1,7	1,7	
hydrotreated vegetable oil from sunflower	2,0	2,0	
hydrotreated vegetable oil from soybean	9,2	9,2	
hydrotreated vegetable oil from palm oil (open effluent pond)	7,0	7,0	
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill)	7,0	7,0	
hydrotreated oil from waste cooking oil	1,7	1,7	
hydrotreated oil from animal fats from rendering (**)	1,5	1,5	
pure vegetable oil from rape seed	1,4	1,4	
pure vegetable oil from sunflower	1,7	1,7	
pure vegetable oil from soybean	8,8	8,8	
pure vegetable oil from palm oil (open effluent pond)	6,7	6,7	
pure vegetable oil from palm oil (process with methane capture at oil mill)	6,7	6,7	
pure oil from waste cooking oil	1,4	1,4	

(*) Default values for processes using CHP are valid only if all the process heat is supplied by CHP.
 (**) Note: applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009, for which emissions related to hygenisation as part of the rendering are not considered.

21.12.2018 EN

Disaggregated default values for transport and distribution of final fuel only. These are already included in the table of 'transport and distribution emissions e_{td} ' as defined in Part C of this Annex, but the following values are useful if an economic operator wishes to declare actual transport emissions for crops or oil transport only).

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler)	1,6	1,6
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler)	1,6	1,6
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*))	1,6	1,6
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*))	1,6	1,6
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*))	1,6	1,6
sugar beet ethanol (with biogas from slop, lignite as pro- cess fuel in CHP plant (*))	1,6	1,6
corn (maize) ethanol (natural gas as process fuel in conventional boiler)	1,6	1,6
corn (maize) ethanol (natural gas as process fuel in CHP plant (*))	1,6	1,6
corn (maize) ethanol (lignite as process fuel in CHP plant (*))	1,6	1,6
corn (maize) ethanol (forest residues as process fuel in CHP plant (*))	1,6	1,6
other cereals excluding maize ethanol (natural gas as pro- cess fuel in conventional boiler)	1,6	1,6
other cereals excluding maize ethanol (natural gas as process fuel in CHP plant (*))	1,6	1,6
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*))	1,6	1,6
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*))	1,6	1,6
sugar cane ethanol	6,0	6,0
the part of ethyl-tertio-butyl-ether (ETBE) from renewable ethanol	Will be considered to be equal to that of the ethanol pro- duction pathway used	

L 328/164

EN

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
the part of tertiary-amyl-ethyl-ether (TAEE) from renew- able ethanol	Will be considered to be equal to that of the ethanol pro- duction pathway used	
rape seed biodiesel	1,3	1,3
sunflower biodiesel	1,3	1,3
soybean biodiesel	1,3	1,3
palm oil biodiesel (open effluent pond)	1,3	1,3
palm oil biodiesel (process with methane capture at oil mill)	1,3	1,3
waste cooking oil biodiesel	1,3	1,3
animal fats from rendering biodiesel (**)	1,3	1,3
hydrotreated vegetable oil from rape seed	1,2	1,2
hydrotreated vegetable oil from sunflower	1,2	1,2
hydrotreated vegetable oil from soybean	1,2	1,2
hydrotreated vegetable oil from palm oil (open effluent pond)	1,2	1,2
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill)	1,2	1,2
hydrotreated oil from waste cooking oil	1,2	1,2
hydrotreated oil from animal fats from rendering (**)	1,2	1,2
pure vegetable oil from rape seed	0,8	0,8
pure vegetable oil from sunflower	0,8	0,8
pure vegetable oil from soybean	0,8	0,8
pure vegetable oil from palm oil (open effluent pond)	0,8	0,8
pure vegetable oil from palm oil (process with methane capture at oil mill)	0,8	0,8
pure oil from waste cooking oil	0,8	0,8

(*) Default values for processes using CHP are valid only if all the process heat is supplied by CHP.
 (**) Note: applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009, for which emissions related to hygenisation as part of the rendering are not considered.
21.12.2018 EN

L 328/165

Total for cultivation, processing, transport and distribution

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
sugar beet ethanol (no biogas from slop, natural gas as process fuel in conventional boiler)	30,7	38,2
sugar beet ethanol (with biogas from slop, natural gas as process fuel in conventional boiler)	21,6	25,5
sugar beet ethanol (no biogas from slop, natural gas as process fuel in CHP plant (*))	25,1	30,4
sugar beet ethanol (with biogas from slop, natural gas as process fuel in CHP plant (*))	19,5	22,5
sugar beet ethanol (no biogas from slop, lignite as process fuel in CHP plant (*))	39,3	50,2
sugar beet ethanol (with biogas from slop, lignite as pro- cess fuel in CHP plant (*))	27,6	33,9
corn (maize) ethanol (natural gas as process fuel in conventional boiler)	48,5	56,8
corn (maize) ethanol, (natural gas as process fuel in CHP plant (*))	42,5	48,5
corn (maize) ethanol (lignite as process fuel in CHP plant (*))	56,3	67,8
corn (maize) ethanol (forest residues as process fuel in CHP plant (*))	29,5	30,3
other cereals excluding maize ethanol (natural gas as pro- cess fuel in conventional boiler)	50,2	58,5
other cereals excluding maize ethanol (natural gas as pro- cess fuel in CHP plant (*))	44,3	50,3
other cereals excluding maize ethanol (lignite as process fuel in CHP plant (*))	59,5	71,7
other cereals excluding maize ethanol (forest residues as process fuel in CHP plant (*))	30,7	31.4
sugar cane ethanol	28,1	28.6
the part from renewable sources of ETBE	Equal to that of the ethanol production pathway used	
the part from renewable sources of TAEE	Equal to that of the ethanol production pathway used	

L 328/166

EN

Official Journal of the European Union

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
rape seed biodiesel	45,5	50,1
sunflower biodiesel	40,0	44,7
soybean biodiesel	42,2	47,0
palm oil biodiesel (open effluent pond)	63,5	75,7
palm oil biodiesel (process with methane capture at oil mill)	46,3	51,6
waste cooking oil biodiesel	11,2	14,9
animals fats from rendering biodiesel (**)	15,3	20,8
hydrotreated vegetable oil from rape seed	45,8	50,1
hydrotreated vegetable oil from sunflower	39,4	43,6
hydrotreated vegetable oil from soybean	42,2	46,5
hydrotreated vegetable oil from palm oil (open effluent pond)	62,2	73,3
hydrotreated vegetable oil from palm oil (process with methane capture at oil mill)	44,1	48,0
hydrotreated oil from waste cooking oil	11,9	16,0
hydrotreated oil from animal fats from rendering (**)	16,0	21,8
pure vegetable oil from rape seed	38,5	40,0
pure vegetable oil from sunflower	32,7	34,3
pure vegetable oil from soybean	35,2	36,9
pure vegetable oil from palm oil (open effluent pond)	56,3	65,4
pure vegetable oil from palm oil (process with methane capture at oil mill)	38,4	57,2
pure oil from waste cooking oil	2,0	2,2

(*) Default values for processes using CHP are valid only if all the process heat is supplied by CHP.
 (**) Note: applies only to biofuels produced from animal by-products classified as category 1 and 2 material in accordance with Regulation (EC) No 1069/2009, for which emissions related to hygenisation as part of the rendering are not considered.

21.12.2018 EN

E. ESTIMATED DISAGGREGATED DEFAULT VALUES FOR FUTURE BIOFUELS AND BIOLIQUIDS THAT WERE NOT ON THE MARKET OR WERE ONLY ON THE MARKET IN NEGLIGIBLE QUANTITIES IN 2016

Disaggregated default values for cultivation: ' e_{ec} ' as defined in Part C of this Annex, including N₂O emissions (including chipping of waste or farmed wood)

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
wheat straw ethanol	1,8	1,8
waste wood Fischer-Tropsch diesel in free-standing plant	3,3	3,3
farmed wood Fischer-Tropsch diesel in free-standing plant	8,2	8,2
waste wood Fischer-Tropsch petrol in free-standing plant	8,2	8,2
farmed wood Fischer-Tropsch petrol in free-standing plant	12,4	12,4
waste wood dimethylether (DME) in free-standing plant	3,1	3,1
farmed wood dimethylether (DME) in free-standing plant	7,6	7,6
waste wood methanol in free-standing plant	3,1	3,1
farmed wood methanol in free-standing plant	7,6	7,6
Fischer-Tropsch diesel from black-liquor gasification inte- grated with pulp mill	2,5	2,5
Fischer-Tropsch petrol from black-liquor gasification inte- grated with pulp mill	2,5	2,5
dimethylether (DME) from black-liquor gasification inte- grated with pulp mill	2,5	2,5
Methanol from black-liquor gasification integrated with pulp mill	2,5	2,5
the part from renewable sources of MTBE	Equal to that of the methan	ol production pathway used

Disaggregated default values for soil N_2O emissions (included in disaggregated default values for cultivation emissions in the 'e_{ec}' table)

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
wheat straw ethanol	0	0
waste wood Fischer-Tropsch diesel in free-standing plant	0	0

L 328/168

EN

Official Journal of the European Union

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
farmed wood Fischer-Tropsch diesel in free-standing plant	4,4	4,4
waste wood Fischer-Tropsch petrol in free-standing plant	0	0
farmed wood Fischer-Tropsch petrol in free-standing plant	4,4	4,4
waste wood dimethylether (DME) in free-standing plant	0	0
farmed wood dimethylether (DME) in free-standing plant	4,1	4,1
waste wood methanol in free-standing plant	0	0
farmed wood methanol in free-standing plant	4,1	4,1
Fischer-Tropsch diesel from black-liquor gasification inte- grated with pulp mill	0	0
Fischer-Tropsch petrol from black-liquor gasification inte- grated with pulp mill	0	0
dimethylether (DME) from black-liquor gasification inte- grated with pulp mill	0	0
Methanol from black-liquor gasification integrated with pulp mill	0	0
the part from renewable sources of MTBE	Equal to that of the methan	nol production pathway used

Disaggregated default values for processing: 'e_p' as defined in Part C of this Annex

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
wheat straw ethanol	4,8	6,8
waste wood Fischer-Tropsch diesel in free-standing plant	0,1	0,1
farmed wood Fischer-Tropsch diesel in free-standing plant	0,1	0,1
waste wood Fischer-Tropsch petrol in free-standing plant	0,1	0,1
farmed wood Fischer-Tropsch petrol in free-standing plant	0,1	0,1
waste wood dimethylether (DME) in free-standing plant	0	0

21.12.2018

EN

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
farmed wood dimethylether (DME) in free-standing plant	0	0
waste wood methanol in free-standing plant	0	0
farmed wood methanol in free-standing plant	0	0
Fischer-Tropsch diesel from black-liquor gasification inte- grated with pulp mill	0	0
Fischer-Tropsch petrol from black-liquor gasification inte- grated with pulp mill	0	0
dimethylether (DME) from black-liquor gasification inte- grated with pulp mill	0	0
methanol from black-liquor gasification integrated with pulp mill	0	0
the part from renewable sources of MTBE	Equal to that of the methan	ol production pathway used

Disaggregated default values for transport and distribution: ' e_{td} ' as defined in Part C of this Annex

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
wheat straw ethanol	7,1	7,1
waste wood Fischer-Tropsch diesel in free-standing plant	10,3	10,3
farmed wood Fischer-Tropsch diesel in free-standing plant	8,4	8,4
waste wood Fischer-Tropsch petrol in free-standing plant	10,3	10,3
farmed wood Fischer-Tropsch petrol in free-standing plant	8,4	8,4
waste wood dimethylether (DME) in free-standing plant	10,4	10,4
farmed wood dimethylether (DME) in free-standing plant	8,6	8,6
waste wood methanol in free-standing plant	10,4	10,4
farmed wood methanol in free-standing plant	8,6	8,6
Fischer-Tropsch diesel from black-liquor gasification inte- grated with pulp mill	7,7	7,7
Fischer-Tropsch petrol from black-liquor gasification inte- grated with pulp mill	7,9	7,9
dimethylether (DME) from black-liquor gasification inte- grated with pulp mill	7,7	7,7

L 328/170

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
methanol from black-liquor gasification integrated with pulp mill	7,9	7,9
the part from renewable sources of MTBE	Equal to that of the methanol production pathway u	

Disaggregated default values for transport and distribution of final fuel only. These are already included in the table of 'transport and distribution emissions e_{td} ' as defined in Part C of this Annex, but the following values are useful if an economic operator wishes to declare actual transport emissions for feedstock transport only).

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
wheat straw ethanol	1,6	1,6
waste wood Fischer-Tropsch diesel in free-standing plant	1,2	1,2
farmed wood Fischer-Tropsch diesel in free-standing plant	1,2	1,2
waste wood Fischer-Tropsch petrol in free-standing plant	1,2	1,2
farmed wood Fischer-Tropsch petrol in free-standing plant	1,2	1,2
waste wood dimethylether (DME) in free-standing plant	2,0	2,0
farmed wood dimethylether (DME) in free-standing plant	2,0	2,0
waste wood methanol in free-standing plant	2,0	2,0
farmed wood methanol in free-standing plant	2,0	2,0
Fischer-Tropsch diesel from black-liquor gasification inte- grated with pulp mill	2,0	2,0
Fischer-Tropsch petrol from black-liquor gasification inte- grated with pulp mill	2,0	2,0
dimethylether (DME) from black-liquor gasification inte- grated with pulp mill	2,0	2,0

21.12.2018 EN

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
methanol from black-liquor gasification integrated with pulp mill	2,0	2,0
the part from renewable sources of MTBE	Equal to that of the methan	ol production pathway used

Total for cultivation, processing, transport and distribution

Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
wheat straw ethanol	13,7	15,7
waste wood Fischer-Tropsch diesel in free-standing plant	13,7	13,7
farmed wood Fischer-Tropsch diesel in free-standing plant	16,7	16,7
waste wood Fischer-Tropsch petrol in free-standing plant	13,7	13,7
farmed wood Fischer-Tropsch petrol in free-standing plant	16,7	16,7
waste wood dimethylether (DME) in free-standing plant	13,5	13,5
farmed wood dimethylether (DME) in free-standing plant	16,2	16,2
waste wood methanol in free-standing plant	13,5	13,5
farmed wood methanol in free-standing plant	16,2	16,2
Fischer-Tropsch diesel from black-liquor gasification inte- grated with pulp mill	10,2	10,2
Fischer-Tropsch petrol from black-liquor gasification inte- grated with pulp mill	10,4	10,4
dimethylether (DME) from black-liquor gasification inte- grated with pulp mill	10,2	10,2
methanol from black-liquor gasification integrated with pulp mill	10,4	10,4
the part from renewable sources of MTBE	Equal to that of the methan	ol production pathway used

ANNEX VI

RULES FOR CALCULATING THE GREENHOUSE GAS IMPACT OF BIOMASS FUELS AND THEIR FOSSIL FUEL COMPARATORS

A. Typical and default values of greenhouse gas emissions savings for biomass fuels if produced with no net-carbon emissions from land-use change

	WOO	DCHIPS					
Biomass fuel production	Transport distance	Greenhouse savings –ty	gas emissions vpical value	Greenhouse savings – d	Greenhouse gas emissions savings – default value		
system		Heat	Electricity	Heat	Electricity		
	1 to 500 km	93 %	89 %	91 %	87 %		
Woodchips from forest	500 to 2 500 km	89 %	84 %	87 %	81 %		
residues	2 500 to 10 000 km	82 %	73 %	78 %	67 %		
	Above 10 000 km	67 %	51 %	60 %	41 %		
Woodchips from short rotation coppice (Eucalyptus)	2 500 to 10 000 km	77 %	65 %	73 %	60 %		
	1 to 500 km	89 %	83 %	87 %	81 %		
Woodchips from short	500 to 2 500 km	85 %	78 %	84 %	76 %		
Fertilised)	2 500 to 10 000 km	78 %	67 %	74 %	62 %		
	Above 10 000 km	63 %	45 %	57 %	35 %		
	1 to 500 km	91 %	87 %	90 %	85 %		
Woodchips from short	500 to 2 500 km	88 %	82 %	86 %	79 %		
No fertilisation)	2 500 to 10 000 km	80 %	70 %	77 %	65 %		
	Above 10 000 km	65 %	48 %	59 %	39 %		
	1 to 500 km	93 %	89 %	92 %	88 %		
Waadahing from storewood	500 to 2 500 km	90 %	85 %	88 %	82 %		
woodcmps from stemwood	2 500 to 10 000 km	82 %	73 %	79 %	68 %		
	Above 10 000 km	67 %	51 %	61 %	42 %		
	1 to 500 km	94 %	92 %	93 %	90 %		
Woodchips from industry	500 to 2 500 km	91 %	87 %	90 %	85 %		
residues	2 500 to 10 000 km	83 %	75 %	80 %	71 %		
	Above 10 000 km	69 %	54 %	63 %	44 %		

21.12.2018

EN

Official Journal of the European Union

WOOD PELLETS (*)						
Biomass fuel produc	tion system	Transport distance	Greenhouse savings – ty	gas emissions vpical value	Greenhouse gas emissions savings – default value	
-	,		Heat	Electricity	Heat	Electricity
		1 to 500 km	58 %	37 %	49 %	24 %
	Case 1	500 to 2 500 km	58 %	37 %	49 %	25 %
		2 500 to 10 000 km	55 %	34 %	47 %	21 %
		Above 10 000 km	50 %	26 %	40 %	11 %
		1 to 500 km	77 %	66 %	72 %	59 %
Wood briquettes or pellets from forest	Case 2a	500 to 2 500 km	77 %	66 %	72 %	59 %
residues	Cube 2u	2 500 to 10 000 km	75 %	62 %	70 %	55 %
		Above 10 000 km	69 %	54 %	63 %	45 %
	Case 3a	1 to 500 km	92 %	88 %	90 %	85 %
		500 to 2 500 km	92 %	88 %	90 %	86 %
		2 500 to 10 000 km	90 %	85 %	88 %	81 %
		Above 10 000 km	84 %	76 %	81 %	72 %
Wood briquettes or	Case 1	2 500 to 10 000 km	52 %	28 %	43 %	15 %
pellets from short rotation coppice	Case 2a	2 500 to 10 000 km	70 %	56 %	66 %	49 %
(Eucalyptus)	Case 3a	2 500 to 10 000 km	85 %	78 %	83 %	75 %
		1 to 500 km	54 %	32 %	46 %	20 %
	Case 1	500 to 10 000 km	52 %	29 %	44 %	16 %
		Above 10 000 km	47 %	21 %	37 %	7 %
Wood briquettes or		1 to 500 km	73 %	60 %	69 %	54 %
pellets from short rotation coppice (Poplar – Fertilised)	Case 2a	500 to 10 000 km	71 %	57 %	67 %	50 %
		Above 10 000 km	66 %	49 %	60 %	41 %
		1 to 500 km	88 %	82 %	87 %	81 %
	Case 3a	500 to 10 000 km	86 %	79 %	84 %	77 %
		Above 10 000 km	80 %	71 %	78 %	67 %

L 328/174

EN

Official Journal of the European Union

		WOOD PELLETS (*	^k)				
Biomass fuel produc	ction system	Transport distance	Greenhouse savings – t	Greenhouse gas emissions savings – typical value		Greenhouse gas emissions savings – default value	
		-	Heat	Electricity	Heat	Electricity	
		1 to 500 km	56 %	35 %	48 %	23 %	
	Case 1	500 to 10 000 km	54 %	32 %	46 %	20 %	
		Above 10 000 km	49 %	24 %	40 %	10 %	
Wood briquettes or pellets from short		1 to 500 km	76 %	64 %	72 %	58 %	
rotation coppice	Case 2a	500 to 10 000 km	74 %	61 %	69 %	54 %	
fertilisation)		Above 10 000 km	68 %	53 %	63 %	45 %	
		1 to 500 km	91 %	86 %	90 %	85 %	
	Case 3a	500 to 10 000 km	89 %	83 %	87 %	81 %	
		Above 10 000 km	83 %	75 %	81 %	71 %	
		1 to 500 km	57 %	37 %	49 %	24 %	
	Case 1	500 to 2 500 km	58 %	37 %	49 %	25 %	
		2 500 to 10 000 km	55 %	34 %	47 %	21 %	
		Above 10 000 km	50 %	26 %	40 %	11 %	
	Case 2a	1 to 500 km	77 %	66 %	73 %	60 %	
Stomwood		500 to 2 500 km	77 %	66 %	73 %	60 %	
Stellwood		2 500 to 10 000 km	75 %	63 %	70 %	56 %	
		Above 10 000 km	70 %	55 %	64 %	46 %	
		1 to 500 km	92 %	88 %	91 %	86 %	
	Casa 3 a	500 to 2 500 km	92 %	88 %	91 %	87 %	
	Case Ja	2 500 to 10 000 km	90 %	85 %	88 %	83 %	
		Above 10 000 km	84 %	77 %	82 %	73 %	
		1 to 500 km	75 %	62 %	69 %	55 %	
	Case 1	500 to 2 500 km	75 %	62 %	70 %	55 %	
	Case 1	2 500 to 10 000 km	72 %	59 %	67 %	51 %	
Wood briquettes or		Above 10 000 km	67 %	51 %	61 %	42 %	
pellets from wood industry residues		1 to 500 km	87 %	80 %	84 %	76 %	
	Casa Ja	500 to 2 500 km	87 %	80 %	84 %	77 %	
	Case 2a	2 500 to 10 000 km	85 %	77 %	82 %	73%	
		Above 10 000 km	79 %	69 %	75 %	63 %	

21.12.2018

EN

WOOD PELLETS (*)						
Biomass fuel production system		Transport distance	Greenhouse gas emissions savings – typical value		Greenhouse gas emissions savings – default value	
			Heat	Electricity	Heat	Electricity
		1 to 500 km	95 %	93 %	94 %	91 %
	Caso 2 a	500 to 2 500 km	95 %	93 %	94 %	92 %
Case 3a	2 500 to 10 000 km	93 %	90 %	92 %	88 %	
		Above 10 000 km	88 %	82 %	85 %	78 %

(*) Case 1 refers to processes in which a natural gas boiler is used to provide the process heat to the pellet mill. Electricity for the pellet mill is supplied from the grid; Case 2a refers to processes in which a woodchips boiler, fed with pre-dried chips, is used to provide process heat. Electricity for the pellet mill is supplied from the grid; Case 3a refers to processes in which a CHP, fed with pre-dried woodchips, is used to provide electricity and heat to the pellet mill.

AGRICULTURE PATHWAYS							
Biomass fuel production	Transport distance	Greenhouse savings – ty	gas emissions vpical value	Greenhouse savings – d	Greenhouse gas emissions savings – default value		
system	Ĩ	Heat	Electricity	Heat	Electricity		
	1 to 500 km	95 %	92 %	93 %	90 %		
Agricultural Residues with	500 to 2 500 km	89 %	83 %	86 %	80 %		
density < 0,2 t/m ³ (*)	2 500 to 10 000 km	77 %	66 %	73 %	60 %		
	Above 10 000 km	57 %	36 %	48 %	23 %		
	1 to 500 km	95 %	92 %	93 %	90 %		
Agricultural Residues with	500 to 2 500 km	93 %	89 %	92 %	87 %		
density > 0,2 t/m ³ (**)	2 500 to 10 000 km	88 %	82 %	85 %	78 %		
	Above 10 000 km	78 %	68 %	74 %	61 %		
	1 to 500 km	88 %	82 %	85 %	78 %		
Straw pellets	500 to 10 000 km	86 %	79 %	83 %	74 %		
	Above 10 000 km	80 %	70 %	76 %	64 %		
	500 to 10 000 km	93 %	89 %	91 %	87 %		
Dagasse Driquettes	Above 10 000 km	87 %	81 %	85 %	77 %		
Palm Kernel Meal	Above 10 000 km	20 %	-18 %	11 %	-33 %		

L 328/176

EN

AGRICULTURE PATHWAYS						
Biomass fuel production system	Transport distance	Greenhouse gas emissions savings – typical value		Greenhouse gas emissions savings – default value		
		Heat	Electricity	Heat	Electricity	
Palm Kernel Meal (no CH ₄ emissions from oil mill)	Above 10 000 km	46 %	20 %	42 %	14 %	

This group of materials includes agricultural residues with a low bulk density and it comprises materials such as straw bales, oat (*) hulls, rice husks and sugar cane bagasse bales (not exhaustive list).

The group of agricultural residues with higher bulk density includes materials such as corn cobs, nut shells, soybean hulls, palm (**) kernel shells (not exhaustive list).

BIOGAS FOR ELECTRICITY (*)					
Biogas production	1 system	Technological option	Greenhouse gas emissions savings – typical value	Greenhouse gas emissions savings – default value	
	Casa 1	Open digestate (²)	146 %	94 %	
	Case I	Close digestate (3)	246 %	240 %	
Wat manura (1)	Casa 2	Open digestate	136 %	85 %	
wet manure ()	Case 2	Close digestate	227 %	219 %	
	Case 3	Open digestate	142 %	86 %	
		Close digestate	243 %	235 %	
	Case 1	Open digestate	36 %	21 %	
		Close digestate	59 %	53 %	
Maize whole plant (*)	Casa 2	Open digestate	34 %	18 %	
	Case 2	Close digestate	55 %	47 %	
	Case 3	Open digestate	28 %	10 %	
		Close digestate	52 %	43 %	

⁽¹⁾ The values for biogas production from manure include negative emissions for emissions saved from raw manure management. The

 ^(*) The values for blogas production from manure include negative emissions for emissions saved from raw manure management. The value of e_{sca} considered is equal to - 45 g CO₂eq/MJ manure used in anaerobic digestion.
 (2) Open storage of digestate accounts for additional emissions of CH₄ and N₂O. The magnitude of those emissions changes with ambient conditions, substrate types and the digestion efficiency.
 (3) Close storage means that the digestate resulting from the digestion process is stored in a gas-tight tank and that the additional biogas released during storage is considered to be recovered for production of additional electricity or biomethane. No greenhouse case management is that process. gas emissions are included in that process.

⁽⁴⁾ Maize whole plant means maize harvested as fodder and ensiled for preservation.

21.12.2018

EN

Official Journal of the European Union

BIOGAS FOR ELECTRICITY (*)					
Biogas production	n system	Technological option	Greenhouse gas emissions savings – typical value	Greenhouse gas emissions savings – default value	
Biowaste	Case 1	Open digestate	47 %	26 %	
		Close digestate	84 %	78 %	
	Case 2	Open digestate	43 %	21 %	
		Close digestate	77 %	68 %	
	Case 3	Open digestate	38 %	14 %	
		Close digestate	76 %	66 %	

(*) Case 1 refers to pathways in which electricity and heat required in the process are supplied by the CHP engine itself. Case 2 refers to pathways in which the electricity required in the process is taken from the grid and the process heat is supplied by the CHP engine itself. In some Member States, operators are not allowed to claim the gross production for subsidies and case 1 is the more likely configuration.

Case 3 refers to pathways in which the electricity required in the process is taken from the grid and the process heat is supplied by a biogas boiler. This case applies to some installations in which the CHP engine is not on-site and biogas is sold (but not upgraded to biomethane).

BIOGAS FOR ELECTRICITY – MIXTURES OF MANURE AND MAIZE					
Biogas production	n system	Technological option	Greenhouse gas emissions savings – typical value	Greenhouse gas emissions savings – default value	
	Case 1	Open digestate	72 %	45 %	
		Close digestate	120 %	114 %	
Manure – Maize	Case 2	Open digestate	67 %	40 %	
80 % - 20 %		Close digestate	111 %	103 %	
	Case 3	Open digestate	65 %	35 %	
		Close digestate	114 %	106 %	
	Case 1	Open digestate	60 %	37 %	
		Close digestate	100 %	94 %	
Manure – Maize 70 % - 30 %		Open digestate	57 %	32 %	
	Case 2	Close digestate	93 %	85 %	
	Case 3	Open digestate	53 %	27 %	
		Close digestate	94 %	85 %	

L 328/178

EN

Official Journal of the European Union

BIOGAS FOR ELECTRICITY – MIXTURES OF MANURE AND MAIZE					
Biogas production	n system	Technological option	Greenhouse gas emissions savings – typical value	Greenhouse gas emissions savings – default value	
Manure – Maize 60 % - 40 %	Case 1	Open digestate	53 %	32 %	
	Case 1	Close digestate	88 %	82 %	
	Case 2	Open digestate	50 %	28 %	
		Close digestate	82 %	73 %	
	Case 3	Open digestate	46 %	22 %	
		Close digestate	81 %	72 %	

BIOMETHANE FOR TRANSPORT (*)					
Biomethane production system	Technological options	Greenhouse gas emis- sions savings – typical value	Greenhouse gas emis- sions savings – default value		
	Open digestate, no off-gas combustion	117 %	72 %		
Wet manure	Open digestate, off-gas combustion	133 %	94 %		
wet manure	Close digestate, no off-gas combustion	190 %	179 %		
	Close digestate, off-gas combustion	206 %	202 %		
	Open digestate, no off-gas combustion	35 %	17 %		
Maize whole plant	Open digestate, off-gas combustion	51 %	39 %		
Walze whole plant	Close digestate, no off-gas combustion	52 %	41 %		
	Close digestate, off-gas combustion	68 %	63 %		
Biowaste	Open digestate, no off-gas combustion	43 %	20 %		
	Open digestate, off-gas combustion	59 %	42 %		
	Close digestate, no off-gas combustion	70 %	58 %		
	Close digestate, off-gas combustion	86 %	80 %		

(*) The greenhouse gas emissions savings for biomethane only refer to compressed biomethane relative to the fossil fuel comparator for transport of 94 g CO_2eq/MJ .

21.12.2018

EN

Official Journal of the European Union

BIOMETHANE - MIXTURES OF MANURE AND MAIZE (*)

Biomethane production system	Technological options	Greenhouse gas emis- sions savings – typical value	Greenhouse gas emis- sions savings – default value
	Open digestate, no off-gas combustion (1)	62 %	35 %
Manure – Maize	Open digestate, off-gas combustion (²)	78 %	57 %
80 % - 20 %	Close digestate, no off-gas combustion	97 %	86 %
	Close digestate, off-gas combustion	113 %	108 %
	Open digestate, no off-gas combustion	53 %	29 %
Manure – Maize	Open digestate, off-gas combustion	69 %	51 %
70 % - 30 %	Close digestate, no off-gas combustion	83 %	71 %
	Close digestate, off-gas combustion	99 %	94 %
	Open digestate, no off-gas combustion	48 %	25 %
Manure – Maize	Open digestate, off-gas combustion	64 %	48 %
60 % - 40 %	Close digestate, no off-gas combustion	74 %	62 %
	Close digestate, off-gas combustion	90 %	84 %

(*) The greenhouse gas emissions savings for biomethane only refer to compressed biomethane relative to the fossil fuel comparator for transport of 94 g CO2eq/MJ.

B. METHODOLOGY

- 1. Greenhouse gas emissions from the production and use of biomass fuels, shall be calculated as follows:
 - (a) Greenhouse gas emissions from the production and use of biomass fuels before conversion into electricity, heating and cooling, shall be calculated as:

 $E = e_{ec} + e_1 + e_p + e_{td} + e_u - e_{sca} - e_{ccs} - e_{ccr}$

Where

- E = total emissions from the production of the fuel before energy conversion;
- e_{ec} = emissions from the extraction or cultivation of raw materials;
- e₁ = annualised emissions from carbon stock changes caused by land-use change;

e_p = emissions from processing;

^{(&}lt;sup>1</sup>) This category includes the following categories of technologies for biogas upgrade to biomethane: Pressure Swing Adsorption (PSA), Pressure Water Scrubbing (PWS), Membranes, Cryogenic, and Organic Physical Scrubbing (OPS). It includes an emission of 0,03 MJ CH₄/MJ biomethane for the emission of methane in the off-gases.

⁽²⁾ This category includes the following categories of technologies for biogas upgrade to biomethane: Pressure Water Scrubbing (PWS) when water is recycled, Pressure Swing Adsorption (PSA), Chemical Scrubbing, Organic Physical Scrubbing (OPS), Membranes and Cryogenic upgrading. No methane emissions are considered for this category (the methane in the off-gas is combusted, if any).

- e_{td} = emissions from transport and distribution;
- e_u = emissions from the fuel in use;
- e_{sca} = emission savings from soil carbon accumulation via improved agricultural management;
- e_{ccs} = emission savings from CO₂ capture and geological storage; and
- e_{ccr} = emission savings from CO₂ capture and replacement.

Emissions from the manufacture of machinery and equipment shall not be taken into account.

(b) In the case of co-digestion of different substrates in a biogas plant for the production of biogas or biomethane, the typical and default values of greenhouse gas emissions shall be calculated as:

$$E=\sum_1^n\cdot E_n$$

EN

where

- E = greenhouse gas emissions per MJ biogas or biomethane produced from co-digestion of the defined mixture of substrates
- S_n = Share of feedstock n in energy content
- E_n = Emission in g CO₂/MJ for pathway n as provided in Part D of this Annex (*)

$$S_n = \frac{P_n \cdot W_n}{\sum_1^n \cdot W_n}$$

where

 P_n = energy yield [MJ] per kilogram of wet input of feedstock n (**)

 W_n = weighting factor of substrate n defined as:

$$W_n = \frac{I_n}{\sum_{1}^{n} I_n} \cdot \left(\frac{1 - AM_n}{1 - SM_n}\right)$$

where:

- I_n = Annual input to digester of substrate n [tonne of fresh matter]
- AM_n = Average annual moisture of substrate n [kg water/kg fresh matter]

 SM_n = Standard moisture for substrate n (***).

- (*) For animal manure used as substrate, a bonus of 45 g CO₂eq/MJ manure (- 54 kg CO₂eq/t fresh matter) is added for improved agricultural and manure management.
- (**) The following values of P_n shall be used for calculating typical and default values:

P(Maize): 4,16 [MJ_{biogas}/kg wet maize @ 65 % moisture] P(Manure): 0,50 [MJ_{biogas}/kg wet manure @ 90 % moisture] P(Biowaste) 3,41 [MJ_{biogas}/kg wet biowaste @ 76 % moisture]

(***) The following values of the standard moisture for substrate SM_n shall be used:

SM(Maize): 0,65 [kg water/kg fresh matter]

SM(Manure): 0,90 [kg water/kg fresh matter]

SM(Biowaste): 0,76 [kg water/kg fresh matter]

(c) In the case of co-digestion of n substrates in a biogas plant for the production of electricity or biomethane, actual greenhouse gas emissions of biogas and biomethane are calculated as follows:

$$E = \sum_{1}^{n} S_n \cdot (e_{ec,n} + e_{td,feedstock,n} + e_{l,n} - e_{sca,n}) + e_p + e_{td,product} + e_u - e_{ccs} - e_{cc}$$

where

Е	= total emissions from the production of the biogas or biomethane before energy conversion;
S _n	= Share of feedstock n, in fraction of input to the digester;
e _{ec,n}	= emissions from the extraction or cultivation of feedstock n;
$\boldsymbol{e}_{td,feedstock,n}$	= emissions from transport of feedstock n to the digester;
$e_{l,n}$	= annualised emissions from carbon stock changes caused by land-use change, for feedstock n ;
e _{sca}	= emission savings from improved agricultural management of feedstock n (*);
e _p	= emissions from processing;
e _{td,product}	= emissions from transport and distribution of biogas and/or biomethane;
e _u	= emissions from the fuel in use, that is greenhouse gases emitted during combustion;
e _{ccs}	= emission savings from CO ₂ capture and geological storage; and
e _{ccr}	= emission savings from CO ₂ capture and replacement.

- (*) For e_{sca} a bonus of 45 g CO₂eq/MJ manure shall be attributed for improved agricultural and manure management in the case animal manure is used as a substrate for the production of biogas and biomethane.
- (d) Greenhouse gas emissions from the use of biomass fuels in producing electricity, heating and cooling, including the energy conversion to electricity and/or heat or cooling produced, shall be calculated as follows:
 - (i) For energy installations delivering only heat:

$$EC_h = \frac{E}{\eta_h}$$

(ii) For energy installations delivering only electricity:

$$EC_{el} = \frac{E}{\eta_{el}}$$

where

 $EC_{h,el}$ = Total greenhouse gas emissions from the final energy commodity.

E = Total greenhouse gas emissions of the fuel before end-conversion.

- η_{el} = The electrical efficiency, defined as the annual electricity produced divided by the annual fuel input, based on its energy content.
- η_h = The heat efficiency, defined as the annual useful heat output divided by the annual fuel input, based on its energy content.
- (iii) For the electricity or mechanical energy coming from energy installations delivering useful heat together with electricity and/or mechanical energy:

$$EC_{el} = \frac{E}{\eta_{el}} \left(\frac{C_{el} \cdot \eta_{el}}{C_{el} \cdot \eta_{el} + C_h \cdot \eta_h} \right)$$

(iv) For the useful heat coming from energy installations delivering heat together with electricity and/or mechanical energy:

$$EC_{h} = \frac{E}{\eta_{h}} \left(\frac{C_{h} \cdot \eta_{h}}{C_{el} \cdot \eta_{el} + C_{h} \cdot \eta_{h}} \right)$$

where:

- EC_{hel} = Total greenhouse gas emissions from the final energy commodity.
- E = Total greenhouse gas emissions of the fuel before end-conversion.
- η_{el} = The electrical efficiency, defined as the annual electricity produced divided by the annual energy input, based on its energy content.
- η_h = The heat efficiency, defined as the annual useful heat output divided by the annual energy input, based on its energy content.
- C_{el} = Fraction of exergy in the electricity, and/or mechanical energy, set to 100 % (C_{el} = 1).

C_h = Carnot efficiency (fraction of exergy in the useful heat).

The Carnot efficiency, C_h, for useful heat at different temperatures is defined as:

$$C_h = \frac{T_h - T_0}{T_h}$$

where:

 T_{h} = Temperature, measured in absolute temperature (kelvin) of the useful heat at point of delivery.

 T_0 = Temperature of surroundings, set at 273,15 kelvin (equal to 0 °C).

If the excess heat is exported for heating of buildings, at a temperature below 150 °C (423,15 kelvin), $C_{\rm h}$ can alternatively be defined as follows:

 $C_{\rm h}$ = Carnot efficiency in heat at 150 °C (423,15 kelvin), which is: 0,3546

For the purposes of that calculation, the following definitions apply:

- (i) 'cogeneration' shall mean the simultaneous generation in one process of thermal energy and electricity and/or mechanical energy;
- (ii) 'useful heat' shall mean heat generated to satisfy an economical justifiable demand for heat, for heating or cooling purposes;
- (iii) 'economically justifiable demand' shall mean the demand that does not exceed the needs for heat or cooling and which would otherwise be satisfied at market conditions.
- 2. Greenhouse gas emissions from biomass fuels shall be expressed as follows:
 - (a) greenhouse gas emissions from biomass fuels, E, shall be expressed in terms of grams of CO₂ equivalent per MJ of biomass fuel, g CO₂eq/MJ;
 - (b) greenhouse gas emissions from heating or electricity, produced from biomass fuels, EC, shall be expressed in terms of grams of CO₂ equivalent per MJ of final energy commodity (heat or electricity), g CO₂eq/MJ.

When heating and cooling are co-generated with electricity, emissions shall be allocated between heat and electricity (as under point 1(d)), irrespective if the heat is used for actual heating purposes or for cooling. ⁽¹⁾

^{(&}lt;sup>1</sup>) Heat or waste heat is used to generate cooling (chilled air or water) through absorption chillers. Therefore, it is appropriate to calculate only the emissions associated to the heat produced, per MJ of heat, irrespectively if the end-use of the heat is actual heating or cooling via absorption chillers.

21.12.2018 EN

L 328/183

Where the greenhouse gas emissions from the extraction or cultivation of raw materials e_{ec} are expressed in unit g CO_2eq/dry -ton of feedstock, the conversion to grams of CO_2 equivalent per MJ of fuel, g CO_2eq /MJ, shall be calculated as follows (¹):

$$e_{ec}fuel_{a}\left[\frac{gCO_{2}eq}{MJfuel}\right]_{ec} = \frac{e_{ec}feedstock_{a}\left[\frac{gCO_{2}eq}{t_{dry}}\right]}{LHV_{a}\left[\frac{MJfeedstock}{t_{dry}feedstock}\right]} \cdot Fuel feedstock factor_{a} \cdot Allocation factor fuel_{a}$$

Where

Allocation factor fuel_a =
$$\left[\frac{\text{Energy in fuel}}{\text{Energy fuel} + \text{Energy in co-products}}\right]$$

Fuel feedstock factor_a = [Ratio of MJ feedstock required to make 1 MJ fuel]

Emissions per dry-ton feedstock shall be calculated as follows:

$$e_{e_{c}}feedstock_{a}\left[\frac{gCO_{2}eq}{t_{dry}}\right] = \frac{e_{e_{c}}feedstock_{a}\left[\frac{gCO_{2}eq}{t_{moist}}\right]}{(1 - moisture \ content)}$$

- 3. Greenhouse gas emissions savings from biomass fuels shall be calculated as follows:
 - (a) greenhouse gas emissions savings from biomass fuels used as transport fuels:

SAVING = $(E_{F(t)} - E_B)/E_{F(t)}$

where

 E_{B} = total emissions from biomass fuels used as transport fuels; and

 $E_{F(t)}$ = total emissions from the fossil fuel comparator for transport

(b) greenhouse gas emissions savings from heat and cooling, and electricity being generated from biomass fuels:

SAVING = $(EC_{F(h\&c,el)} - EC_{B(h\&c,el)})/EC_{F(h\&c,el)}$

where

 $EC_{B(h\&c,el)}$ = total emissions from the heat or electricity,

 $EC_{F(h\&c,e)}$ = total emissions from the fossil fuel comparator for useful heat or electricity.

4. The greenhouse gases taken into account for the purposes of point 1 shall be CO₂, N₂O and CH₄. For the purposes of calculating CO₂ equivalence, those gases shall be valued as follows:

CO₂: 1

N₂O: 298

CH₄: 25

5. Emissions from the extraction, harvesting or cultivation of raw materials, e_{ec} , shall include emissions from the extraction, harvesting or cultivation process itself; from the collection, drying and storage of raw materials; from waste and leakages; and from the production of chemicals or products used in extraction or cultivation. Capture of CO_2 in the cultivation of raw materials shall be excluded. Estimates of emissions from agriculture biomass cultivation may be derived from the regional averages for cultivation emissions included in the reports referred to in Article 31(4) of this Directive or the information on the disaggregated default values for cultivation emissions included in this Annex, as an alternative to using actual values. In the absence of relevant information in those reports it is allowed to calculate averages based on local farming practises based for instance on data of a group of farms, as an alternative to using actual values.

Estimates of emissions from cultivation and harvesting of forestry biomass may be derived from the use of averages for cultivation and harvesting emissions calculated for geographical areas at national level, as an alternative to using actual values.

^{(&}lt;sup>1</sup>) The formula for calculating greenhouse gas emissions from the extraction or cultivation of raw materials eec describes cases where feedstock is converted into biofuels in one step. For more complex supply chains, adjustments are needed for calculating greenhouse gas emissions from the extraction or cultivation of raw materials eec for intermediate products.

L 328/184 EN

- 6. For the purposes of the calculation referred to in point 1(a), emission savings from improved agriculture management, e_{sca}, such as shifting to reduced or zero-tillage, improved crop/rotation, the use of cover crops, including crop residue management, and the use of organic soil improver (e.g. compost, manure fermentation digestate), shall be taken into account only if solid and verifiable evidence is provided that the soil carbon has increased or that it is reasonable to expect to have increased over the period in which the raw materials concerned were cultivated while taking into account the emissions where such practices lead to increased fertiliser and herbicide use (¹).
- 7. Annualised emissions from carbon stock changes caused by land-use change, e₁, shall be calculated by dividing total emissions equally over 20 years. For the calculation of those emissions the following rule shall be applied:

 $e_1 = (CS_R - CS_A) \times 3,664 \times 1/20 \times 1/P - e_B, (^2)$

where

- e_1 = annualised greenhouse gas emissions from carbon stock change due to land-use change (measured as mass of CO₂-equivalent per unit biomass fuel energy). 'Cropland' (³) and 'perennial cropland' (⁴) shall be regarded as one land use;
- CS_R = the carbon stock per unit area associated with the reference land use (measured as mass (tonnes) of carbon per unit area, including both soil and vegetation). The reference land use shall be the land use in January 2008 or 20 years before the raw material was obtained, whichever was the later;
- CS_A = the carbon stock per unit area associated with the actual land use (measured as mass (tonnes) of carbon per unit area, including both soil and vegetation). In cases where the carbon stock accumulates over more than one year, the value attributed to CS_A shall be the estimated stock per unit area after 20 years or when the crop reaches maturity, whichever the earlier;
- P = the productivity of the crop (measured as biomass fuel energy per unit area per year); and
- e_{B} = bonus of 29 g CO₂eq/MJ biomass fuel if biomass is obtained from restored degraded land under the conditions laid down in point 8.
- 8. The bonus of 29 g CO_2eq/MJ shall be attributed if evidence is provided that the land:
 - (a) was not in use for agriculture in January 2008 or any other activity; and
 - (b) is severely degraded land, including such land that was formerly in agricultural use.

The bonus of 29 g CO_2eq/MJ shall apply for a period of up to 20 years from the date of conversion of the land to agricultural use, provided that a steady increase in carbon stocks as well as a sizable reduction in erosion phenomena for land falling under (b) are ensured.

- 9. 'Severely degraded land' means land that, for a significant period of time, has either been significantly salinated or presented significantly low organic matter content and has been severely eroded.
- 10. In accordance with point 10 of Part C of Annex V to this Directive, Commission Decision 2010/335/EU (⁵), which provides for guidelines for the calculation of land carbon stocks in relation to this Directive, drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories volume 4, and in accordance with Regulations (EU) No 525/2013 and (EU) 2018/841, shall serve as the basis for the calculation of land carbon stocks.

⁽¹⁾ Measurements of soil carbon can constitute such evidence, e.g. by a first measurement in advance of the cultivation and subsequent ones at regular intervals several years apart. In such a case, before the second measurement is available, increase in soil carbon would be estimated on the basis of representative experiments or soil models. From the second measurement onwards, the measurements would constitute the basis for determining the existence of an increase in soil carbon and its magnitude.

^{(&}lt;sup>2</sup>) The quotient obtained by dividing the molecular weight of CO2 (44,010 g/mol) by the molecular weight of carbon (12,011 g/mol) is equal to 3,664.

^{(&}lt;sup>3</sup>) Cropland as defined by IPCC.

^(*) Perennial crops are defined as multi-annual crops, the stem of which is usually not annually harvested such as short rotation coppice and oil palm.

^{(&}lt;sup>5</sup>) Commission Decision 2010/335/EU of 10 June 2010 on guidelines for the calculation of land carbon stocks for the purpose of Annex V to Directive 2009/28/EC (OJ L 151, 17.6.2010, p. 19).

21.12.2018 EN

11. Emissions from processing, e_p , shall include emissions from the processing itself; from waste and leakages; and from the production of chemicals or products used in processing, including the CO_2 emissions corresponding to the carbon contents of fossil inputs, whether or not actually combusted in the process.

In accounting for the consumption of electricity not produced within the solid or gaseous biomass fuel production plant, the greenhouse gas emissions intensity of the production and distribution of that electricity shall be assumed to be equal to the average emission intensity of the production and distribution of electricity in a defined region. By way of derogation from this rule, producers may use an average value for an individual electricity production plant for electricity produced by that plant, if that plant is not connected to the electricity grid.

Emissions from processing shall include emissions from drying of interim products and materials where relevant.

- 12. Emissions from transport and distribution, e_{td}, shall include emissions from the transport of raw and semi-finished materials and from the storage and distribution of finished materials. Emissions from transport and distribution to be taken into account under point 5 shall not be covered by this point.
- 13. Emissions of CO₂ from fuel in use, e_u , shall be taken to be zero for biomass fuels. Emissions of non-CO₂ greenhouse gases (CH₄ and N₂O) from the fuel in use shall be included in the e_u factor.
- 14. Emission savings from CO₂ capture and geological storage, e_{ccs} , that have not already been accounted for in e_p , shall be limited to emissions avoided through the capture and storage of emitted CO₂ directly related to the extraction, transport, processing and distribution of biomass fuel if stored in compliance with Directive 2009/31/EC.
- 15. Emission savings from CO_2 capture and replacement, e_{cer} shall be related directly to the production of biomass fuel they are attributed to, and shall be limited to emissions avoided through the capture of CO_2 of which the carbon originates from biomass and which is used to replace fossil-derived CO_2 in production of commercial products and services.
- 16. Where a cogeneration unit providing heat and/or electricity to a biomass fuel production process for which emissions are being calculated produces excess electricity and/or excess useful heat, the greenhouse gas emissions shall be divided between the electricity and the useful heat according to the temperature of the heat (which reflects the usefulness (utility) of the heat). The useful part of the heat is found by multiplying its energy content with the Carnot efficiency, C_h , calculated as follows:

$$C_h = \frac{T_h - T_0}{T_h}$$

where

- T_{h} = Temperature, measured in absolute temperature (kelvin) of the useful heat at point of delivery.
- T_0 = Temperature of surroundings, set at 273,15 kelvin (equal to 0 °C).

If the excess heat is exported for heating of buildings, at a temperature below 150 $^{\circ}$ C (423,15 kelvin), C_h can alternatively be defined as follows:

 $C_{\rm h}$ = Carnot efficiency in heat at 150 °C (423,15 kelvin), which is: 0,3546

For the purposes of that calculation, the actual efficiencies shall be used, defined as the annual mechanical energy, electricity and heat produced respectively divided by the annual energy input.

For the purposes of that calculation, the following definitions apply:

- (a) 'cogeneration' shall mean the simultaneous generation in one process of thermal energy and electrical and/or mechanical energy;
- (b) 'useful heat' shall mean heat generated to satisfy an economical justifiable demand for heat, for heating or cooling purposes;
- (c) 'economically justifiable demand' shall mean the demand that does not exceed the needs for heat or cooling and which would otherwise be satisfied at market conditions.

L 328/186 EN

- 17. Where a biomass fuel production process produces, in combination, the fuel for which emissions are being calculated and one or more other products ('co-products'), greenhouse gas emissions shall be divided between the fuel or its intermediate product and the co-products in proportion to their energy content (determined by lower heating value in the case of co-products other than electricity and heat). The greenhouse gas intensity of excess useful heat or excess electricity is the same as the greenhouse gas intensity of heat or electricity delivered to the biomass fuel production process and is determined from calculating the greenhouse gas intensity of all inputs and emissions, including the feedstock and CH₄ and N₂O emissions, to and from the cogeneration unit, boiler or other apparatus delivering heat or electricity to the biomass fuel production process. In the case of cogeneration of electricity and heat, the calculation is performed following point 16.
- 18. For the purposes of the calculations referred to in point 17, the emissions to be divided shall be $e_{ec} + e_1 + e_{sca} + those fractions of <math>e_p$, e_{td} , e_{ccs} and e_{ccr} that take place up to and including the process step at which a co-product is produced. If any allocation to co-products has taken place at an earlier process step in the life-cycle, the fraction of those emissions assigned in the last such process step to the intermediate fuel product shall be used for those purposes instead of the total of those emissions.

In the case of biogas and biomethane, all co-products that do not fall under the scope of point 7 shall be taken into account for the purposes of that calculation. No emissions shall be allocated to wastes and residues. Co-products that have a negative energy content shall be considered to have an energy content of zero for the purposes of the calculation.

Wastes and residues, including tree tops and branches, straw, husks, cobs and nut shells, and residues from processing, including crude glycerine (glycerine that is not refined) and bagasse, shall be considered to have zero life-cycle greenhouse gas emissions up to the process of collection of those materials irrespectively of whether they are processed to interim products before being transformed into the final product.

In the case of biomass fuels produced in refineries, other than the combination of processing plants with boilers or cogeneration units providing heat and/or electricity to the processing plant, the unit of analysis for the purposes of the calculation referred to in point 17 shall be the refinery.

19. For biomass fuels used for the production of electricity, for the purposes of the calculation referred to in point 3, the fossil fuel comparator $EC_{F(el)}$ shall be 183 g CO_2eq/MJ electricity or 212 g CO_2eq/MJ electricity for the outermost regions.

For biomass fuels used for the production of useful heat, as well as for the production of heating and/or cooling, for the purposes of the calculation referred to in point 3, the fossil fuel comparator $EC_{F(h)}$ shall be 80 g CO_2eq/MJ heat.

For biomass fuels used for the production of useful heat, in which a direct physical substitution of coal can be demonstrated, for the purposes of the calculation referred to in point 3, the fossil fuel comparator $EC_{F(h)}$ shall be 124 g CO_2eq/MJ heat.

For biomass fuels used as transport fuels, for the purposes of the calculation referred to in point 3, the fossil fuel comparator $E_{F(t)}$ shall be 94 g CO₂eq/MJ.

C. DISAGGREGATED DEFAULT VALUES FOR BIOMASS FUELS

Wood briquettes or pellets

Diamage fuel anodustion		Gr	eenhouse gas emis (g CO ₂	ssions – typical va eq/MJ)	lue	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)					
system	Transport distance	Cultivation	Processing	Transport	Non-CO ₂ emissions from the fuel in use	Cultivation	Processing	Transport	Non-CO ₂ emis- sions from the fuel in use		
	1 to 500 km	0,0	1,6	3,0	0,4	0,0	1,9	3,6	0,5		
Wood chips from forest	500 to 2 500 km	0,0	1,6	5,2	0,4	0,0	1,9	6,2	0,5		
residues	2 500 to 10 000 km	0,0	1,6	10,5	0,4	0,0	1,9	12,6	0,5		
	Above 10 000 km	0,0	1,6	20,5	0,4	0,0	1,9	24,6	0,5		
Wood chips from SRC (Eucalyptus)	ood chips from SRC 2 500 to 10 000 km calyptus)		0,0	11,0	0,4	4,4	0,0	13,2	0,5		
	1 to 500 km	3,9	0,0	3,5	0,4	3,9	0,0	4,2	0,5		
Wood chips from SRC	500 to 2 500 km	3,9	0,0	5,6	0,4	3,9	0,0	6,8	0,5		
(Poplar – fertilised)	2 500 to 10 000 km	3,9	0,0	11,0	0,4	3,9	0,0	13,2	0,5		
	Above 10 000 km	3,9	0,0	21,0	0,4	3,9	0,0	25,2	0,5		
	1 to 500 km	2,2	0,0	3,5	0,4	2,2	0,0	4,2	0,5		
Wood chips from SRC	500 to 2 500 km	2,2	0,0	5,6	0,4	2,2	0,0	6,8	0,5		
(Poplar – Not fertilised)	2 500 to 10 000 km	2,2	0,0	11,0	0,4	2,2	0,0	13,2	0,5		
	Above 10 000 km	2,2	0,0	21,0	0,4	2,2	0,0	25,2	0,5		
Wood shins from stamwood	1 to 500 km	1,1	0,3	3,0	0,4	1,1	0,4	3,6	0,5		
	500 to 2 500 km	1,1	0,3	5,2	0,4	1,1	0,4	6,2	0,5		
wood cmps from stemwood	2 500 to 10 000 km	1,1	0,3	10,5	0,4	1,1	0,4	12,6	0,5		
	Above 10 000 km	1,1	0,3	20,5	0,4	1,1	0,4	24,6	0,5		

21.12.2018

EN

L 328/187

Riomass fuel production		Gr	eenhouse gas emis (g CO ₂	ssions – typical va eq/MJ)	lue	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)					
system	Transport distance	Cultivation	Processing	Transport	Non-CO ₂ emis- sions from the fuel in use	Cultivation	Processing	Transport	Non-CO ₂ emis- sions from the fuel in use		
	1 to 500 km		0,3	3,0	0,4	0,0	0,4	3,6	0,5		
Wood chips from wood	500 to 2 500 km	0,0	0,3	5,2	0,4	0,0	0,4	6,2	0,5		
industry residues	2 500 to 10 000 km	0,0	0,3	10,5	0,4	0,0	0,4	12,6	0,5		
-	Above 10 000 km	0,0	0,3	20,5	0,4	0,0	0,4	24,6	0,5		

Wood briquettes or pellets

Biomass fuel production system	Transport distance	Gr	eenhouse gas emis (g CO ₂	ssions – typical va eq/MJ)	lue	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)					
		Cultivation	Processing	Transport & distribution	Non-CO ₂ emis- sions from the fuel in use	Cultivation	Processing	Transport & distribution	Non-CO ₂ emissions from the fuel in use		
	1 to 500 km	0,0	25,8	2,9	0,3	0,0	30,9	3,5	0,3		
Wood briquettes or pellets	500 to 2 500 km	0,0	25,8	2,8	0,3	0,0	30,9	3,3	0,3		
from forest residues (case 1)	2 500 to 10 000 km	0,0	25,8	4,3	0,3	0,0	30,9	5,2	0,3		
	Above 10 000 km	0,0	25,8	7,9	0,3	0,0	30,9	9,5	0,3		
	1 to 500 km	0,0	12,5	3,0	0,3	0,0	15,0	3,6	0,3		
Wood briquettes or pellets	500 to 2 500 km	0,0	12,5	2,9	0,3	0,0	15,0	3,5	0,3		
(case 2a)	2 500 to 10 000 km	0,0	12,5	4,4	0,3	0,0	15,0	5,3	0,3		
	Above 10 000 km	0,0	12,5	8,1	0,3	0,0	15,0	9,8	0,3		
	1 to 500 km	0,0	2,4	3,0	0,3	0,0	2,8	3,6	0,3		
Wood briquettes or pellets	500 to 2 500 km	0,0	2,4	2,9	0,3	0,0	2,8	3,5	0,3		
(case 3a)	2 500 to 10 000 km	0,0	2,4	4,4	0,3	0,0	2,8	5,3	0,3		
	Above 10 000 km	0,0	2,4	8,2	0,3	0,0	2,8	9,8	0,3		

L 328/188

EN

Transport distance	Gr	eenhouse gas emi (g CO	ssions – typical va ₂eq/MJ)	lue	Gr	eenhouse gas emi (g CO	ssions – default va 2eq/MJ)	alue	21.12.2
	Cultivation	Processing	Transport & distribution	Non-CO ₂ emis- sions from the fuel in use	Cultivation	Processing	Transport & distribution	Non-CO ₂ emis- sions from the fuel in use	2018
2 500 to 10 000 km	3,9	24,5	4,3	0,3	3,9	29,4	5,2	0,3	EN
2 500 to 10 000 km	5,0	10,6	4,4	0,3	5,0	12,7	5,3	0,3	
2 500 to 10 000 km	5,3	0,3	4,4	0,3	5,3	0,4	5,3	0,3	Offici
1 to 500 km	3,4	24,5	2,9	0,3	3,4	29,4	3,5	0,3	al Jour
500 to 10 000 km	3,4	24,5	4,3	0,3	3,4	29,4	5,2	0,3	nal of
Above 10 000 km	3,4	24,5	7,9	0,3	3,4	29,4	9,5	0,3	the Eu
1 to 500 km	4,4	10,6	3,0	0,3	4,4	12,7	3,6	0,3	ropean
500 to 10 000 km	4,4	10,6	4,4	0,3	4,4	12,7	5,3	0,3	Union
Above 10 000 km	4,4	10,6	8,1	0,3	4,4	12,7	9,8	0,3	
1 to 500 km	4,6	0,3	3,0	0,3	4,6	0,4	3,6	0,3	
500 to 10 000 km	4,6	0,3	4,4	0,3	4,6	0,4	5,3	0,3	
Above 10 000 km	4,6	0,3	8,2	0,3	4,6	0,4	9,8	0,3	
1 to 500 km	2,0	24,5	2,9	0,3	2,0	29,4	3,5	0,3	
500 to 2 500 km	2,0	24,5	4,3	0,3	2,0	29,4	5,2	0,3	L 3:
2 500 to 10 000 km	2,0	24,5	7,9	0,3	2,0	29,4	9,5	0,3	28/189
	Transport distance 2 500 to 10 000 km 2 500 to 10 000 km 2 500 to 10 000 km 1 to 500 km 500 to 10 000 km 500 to 10 000 km 1 to 500 km 3 500 to 10 000 km 1 to 500 km 1 to 500 km 500 to 10 000 km 1 to 500 km 500 to 10 000 km 1 to 500 km 1 to 500 km 1 to 500 km 500 to 10 000 km 1 to 500 km 500 to 10 000 km 500 to 10 000 km 500 to 10 000 km 2 500 to 10 000 km	Transport distance Gr Cultivation Cultivation 2 500 to 10 000 km 3,9 2 500 to 10 000 km 5,0 2 500 to 10 000 km 5,3 1 to 500 km 3,4 500 to 10 000 km 3,4 500 to 10 000 km 3,4 1 to 500 km 3,4 1 to 500 km 4,4 500 to 10 000 km 4,4 500 to 10 000 km 4,4 1 to 500 km 4,6 1 to 500 km 2,0 500 to 10 000 km 2,0 500 to 10 000 km 2,0	Transport distance Greenbuse gas eming (g CO) Cultivation Processing 2 500 to 10 000 km 3,9 24,5 2 500 to 10 000 km 5,0 10,6 2 500 to 10 000 km 5,3 0,3 1 to 500 km 3,4 24,5 500 to 10 000 km 3,4 24,5 500 to 10 000 km 3,4 24,5 Above 10 000 km 3,4 24,5 1 to 500 km 3,4 24,5 Above 10 000 km 4,4 10,6 500 to 10 000 km 4,4 10,6 1 to 500 km 4,6 0,3 500 to 10 000 km 2,0 24,5 500 to 10 000 km 2,0 24,5 500 to 2 500 km 2,0 24,5 500 to 10 000 km 2,0 24,5	Transport distance Greenhouse gas emissions - typical value (g CO2eq/M) Cultivation Processing Transport & distribution 2 500 to 10 000 km 3,9 24,5 4,3 2 500 to 10 000 km 5,0 10,6 4,4 2 500 to 10 000 km 5,3 0,3 4,4 2 500 to 10 000 km 3,4 24,5 2,9 500 to 10 000 km 3,4 24,5 7,9 1 to 500 km 3,4 24,5 7,9 1 to 500 km 4,4 10,6 3,0 500 to 10 000 km 4,4 10,6 8,1 1 to 500 km 4,6 0,3 3,0 500 to 10 000 km 4,6 0,3 4,4 Above 10 000 km 4,6 0,3 8,2 1 to 500 km 2,0 24,5 2,9 500 to 10 000 km 2,0	Transport distance Greenhouse gas emissions – typical value (g CO ₂ eq/M)) Cultivation Processing Transport & distribution Non-CO ₂ emissions from the fuel in use 2 500 to 10 000 km 3,9 24,5 4,3 0,3 2 500 to 10 000 km 5,0 10,6 4,4 0,3 2 500 to 10 000 km 5,3 0,3 4,4 0,3 1 to 500 km 3,4 24,5 4,3 0,3 500 to 10 000 km 3,4 24,5 2,9 0,3 1 to 500 km 3,4 24,5 4,3 0,3 500 to 10 000 km 3,4 24,5 7,9 0,3 1 to 500 km 3,4 24,5 7,9 0,3 1 to 500 km 4,4 10,6 3,0 0,3 500 to 10 000 km 4,4 10,6 8,1 0,3 1 to 500 km 4,6 0,3 3,0 0,3 1 to 500 km 4,6 0,3 8,2 0,3 1 to 500 km 2,0 24,5 4,3 <	Transport distance Greenhouse gas emissions - typical value Non-CO, emissions from the distribution Cultivation 2 500 to 10 000 km 3,9 24,5 4,3 0,3 3,9 2 500 to 10 000 km 5,0 10,6 4,4 0,3 5,0 2 500 to 10 000 km 5,3 0,3 4,4 0,3 5,3 2 500 to 10 000 km 5,3 0,3 4,4 0,3 3,4 1 to 500 km 3,4 24,5 2,9 0,3 3,4 500 to 10 000 km 3,4 24,5 7,9 0,3 3,4 1 to 500 km 3,4 24,5 7,9 0,3 3,4 1 to 500 km 4,4 10,6 3,0 0,3 4,4 500 to 10 000 km 4,4 10,6 8,1 0,3 4,4 500 to 10 000 km 4,6 0,3 3,0 0,3 4,6 500 to 10 000 km 4,6 0,3 <	Transport distance Greenhouse gas emissions - typical value (g CO, edj,M) Non-CO, emis- site Cultivation Processing Transport & distribution Non-CO, emis- site Cultivation Processing 2 500 to 10 000 km 3.9 24,5 4,3 0.3 3.9 29,4 2 500 to 10 000 km 5,0 10,6 4,4 0,3 5,0 12,7 2 500 to 10 000 km 5,3 0,3 4,4 0,3 5,3 0,4 2 500 to 10 000 km 5,3 0,3 4,4 0,3 5,3 0,4 1 to 500 km 3,4 24,5 2,9 0,3 3,4 29,4 500 to 10 000 km 3,4 24,5 2,9 0,3 3,4 29,4 1 to 500 km 3,4 24,5 7,9 0,3 3,4 29,4 1 to 500 km 4,4 10,6 3,0 0,3 4,4 12,7 500 to 10 000 km 4,4 10,6 8,1 0,3 4,6 0,4 1 to 500 km 4,6 0	Transport distance Greenhouse gas emissions - typical value (g CO.eq/M) Greenhouse gas emissions - default value (g CO.eq/M) Cultivation Processing Transport, & distribution Non-CQ emits field in use Cultivation Processing Transport, & distribution 2 500 to 10 000 km 3,9 24.5 4.3 0,3 3,9 29,4 5,2 2 500 to 10 000 km 5,0 10,6 4,4 0,3 5,0 12,7 5,3 2 500 to 10 000 km 5,3 0,3 4,4 0,3 5,3 0,4 5,3 2 500 to 10 000 km 5,3 0,3 4,4 0,3 5,3 0,4 5,3 2 500 to 10 000 km 3,4 24,5 2,9 0,3 3,4 29,4 3,5 500 to 10 000 km 3,4 24,5 7,9 0,3 3,4 29,4 5,2 Above 10 000 km 4,4 10,6 3,0 0,3 4,4 12,7 5,3 1 to 500 km 4,4 10,6 8,1 0,3 4,4 12,7	Transport distance Greenhouse gas emissions – upplead view get CO_eq(M) Description of the get CO_eq(M) Descri

Biomass fuel production system	Transport distance	Gr	eenhouse gas emi (g CO	ssions – typical va ₂eq/MJ)	lue	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)				
		Cultivation	Processing	Transport & distribution	Non-CO ₂ emissions from the fuel in use	Cultivation	Processing	Transport & distribution	Non-CO ₂ emis- sions from the fuel in use	
Wood briquettes from short	1 to 500 km	2,5	10,6	3,0	0,3	2,5	12,7	3,6	0,3	
rotation coppice (Poplar – no fertilisation –	500 to 10 000 km	2,5	10,6	4,4	0,3	2,5	12,7	5,3	0,3	
case 2a)	Above 10 000 km	2,5	10,6	8,1	0,3	2,5	12,7	9,8	0,3	
Wood briquettes from short	1 to 500 km	2,6	0,3	3,0	0,3	2,6	0,4	3,6	0,3	
rotation coppice (Poplar – no fertilisation–	500 to 10 000 km	2,6	0,3	4,4	0,3	2,6	0,4	5,3	0,3	
case 3a)	Above 10 000 km	2,6	0,3	8,2	0,3	2,6	0,4	9,8	0,3	
	1 to 500 km	1,1	24,8	2,9	0,3	1,1	29,8	3,5	0,3	
Wood briquettes or pellets	500 to 2 500 km	1,1	24,8	2,8	0,3	1,1	29,8	3,3	0,3	
from stemwood (case 1)	2 500 to 10 000 km	1,1	24,8	4,3	0,3	1,1	29,8	5,2	0,3	
	Above 10 000 km	1,1	24,8	7,9	0,3	1,1	29,8	9,5	0,3	
	1 to 500 km	1,4	11,0	3,0	0,3	1,4	13,2	3,6	0,3	
Wood briquettes or pellets	500 to 2 500 km	1,4	11,0	2,9	0,3	1,4	13,2	3,5	0,3	
from stemwood (case 2a)	2 500 to 10 000 km	1,4	11,0	4,4	0,3	1,4	13,2	5,3	0,3	
	Above 10 000 km	1,4	11,0	8,1	0,3	1,4	13,2	9,8	0,3	
	1 to 500 km	1,4	0,8	3,0	0,3	1,4	0,9	3,6	0,3	
Wood briquettes or pellets	500 to 2 500 km	1,4	0,8	2,9	0,3	1,4	0,9	3,5	0,3	
from stemwood (case 3a)	2 500 to 10 000 km	1,4	0,8	4,4	0,3	1,4	0,9	5,3	0,3	
	Above 10 000 km	1,4	0,8	8,2	0,3	1,4	0,9	9,8	0,3	
	1 to 500 km	0,0	14,3	2,8	0,3	0,0	17,2	3,3	0,3	
Wood briquettes or pellets	500 to 2 500 km	0,0	14,3	2,7	0,3	0,0	17,2	3,2	0,3	
(case 1)	2 500 to 10 000 km	0,0	14,3	4,2	0,3	0,0	17,2	5,0	0,3	
	Above 10 000 km	0,0	14,3	7,7	0,3	0,0	17,2	9,2	0,3	

L 328/190

EN

Biomass fuel production system	Transport distance	Gr	eenhouse gas emis (g CO ₂	ssions – typical va eq/MJ)	lue	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)					
		Cultivation	Processing	Transport & distribution	Non-CO ₂ emis- sions from the fuel in use	Cultivation	Processing	Transport & distribution	Non-CO ₂ emis- sions from the fuel in use		
	1 to 500 km	0,0	6,0	2,8	0,3	0,0	7,2	3,4	0,3		
Wood briquettes or pellets	500 to 2 500 km	0,0	6,0	2,7	0,3	0,0	7,2	3,3	0,3		
(case 2a)	2 500 to 10 000 km	0,0	6,0	4,2	0,3	0,0	7,2	5,1	0,3		
	Above 10 000 km	0,0	6,0	7,8	0,3	0,0	7,2	9,3	0,3		
	1 to 500 km	0,0	0,2	2,8	0,3	0,0	0,3	3,4	0,3		
Wood briquettes or pellets	500 to 2 500 km	0,0	0,2	2,7	0,3	0,0	0,3	3,3	0,3		
from wood industry residues (case 3a)	2 500 to 10 000 km	0,0	0,2	4,2	0,3	0,0	0,3	5,1	0,3		
	Above 10 000 km	0,0	0,2	7,8	0,3	0,0	0,3	9,3	0,3		

Agriculture pathways

Biomass fuel production system	Transport distance	Greenhou	se gas emissions -	- typical value (g (CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)					
		Cultivation	Processing	Transport & distribution	Non-CO ₂ emissions from the fuel in use	Cultivation	Processing	Transport & distribution	Non-CO ₂ emissions from the fuel in use		
	1 to 500 km	0,0	0,9	2,6	0,2	0,0	1,1	3,1	0,3		
Agricultural Residues with	500 to 2 500 km	0,0	0,9	6,5	0,2	0,0	1,1	7,8	0,3		
Agricultural Residues with density < 0,2 t/m ³	2 500 to 10 000 km	0,0	0,0 0,9		0,2	0,2 0,0		17,0	0,3		
	Above 10 000 km	0,0	0,9	28,3	0,2	0,0	1,1	34,0	0,3		
	1 to 500 km	0,0	0,9	2,6	0,2	0,0	1,1	3,1	0,3		
Agricultural Residues with	500 to 2 500 km	0,0	0,9	3,6	0,2	0,0	1,1	4,4	0,3		
density > 0,2 t/m ³	2 500 to 10 000 km	0,0	0,9	7,1	0,2	0,0	1,1	8,5	0,3		
	Above 10 000 km	0,0	0,9	13,6	0,2	0,0	1,1	16,3	0,3		

21.12.2018

EN

Biomass fuel production system	Transport distance	Greenhou	ise gas emissions -	- typical value (g (CO ₂ eq/MJ)	Greenhou	se gas emissions -	- default value (g	CO ₂ eq/MJ)
		Cultivation	Processing	Transport & distribution	Non-CO ₂ emis- sions from the fuel in use	Cultivation	Processing	Transport & distribution	Non-CO ₂ emissions from the fuel in use
	1 to 500 km	0,0	5,0	3,0	0,2	0,0	6,0	3,6	0,3
Straw pellets	500 to 10 000 km	0,0	5,0	4,6	0,2	0,0	6,0	5,5	0,3
	Above 10 000 km	0,0	5,0	8,3	0,2	0,0	6,0	10,0	0,3
Pagassa briguattas	500 to 10 000 km	0,0	0,3	4,3	0,4	0,0	0,4	5,2	0,5
bagasse bliquettes	Above 10 000 km	0,0	0,3	8,0	0,4	0,0	0,4	9,5	0,5
Palm Kernel Meal	Above 10 000 km	21,6	21,1	11,2	0,2	21,6	25,4	13,5	0,3
Palm Kernel Meal (no CH ₄ emissions from oil mill)	Above 10 000 km	21,6	3,5	11,2	0,2	21,6	4,2	13,5	0,3

Disaggregated default values for biogas for the production of electricity

				TYPICAI	. VALUE [g C	O ₂ eq/MJ]			DEFAUL	Г VALUE [g C	O ₂ eq/MJ]	
Biomass fuel product	tion system	system Technology		Processing	Non-CO ₂ emissions from the fuel in use	Transport	Manure credits	Cultiva- tion	Processing	Non-CO ₂ emissions from the fuel in use	Transport	Manure credits
	case 1	Open digestate	0,0	69,6	8,9	0,8	- 107,3	0,0	97,4	12,5	0,8	- 107,3
		Close digestate	0,0	0,0	8,9	0,8	- 97,6	0,0	0,0	12,5	0,8	- 97,6
Wat manure (1)	c159)	Open digestate	0,0	74,1	8,9	0,8	- 107,3	0,0	103,7	12,5	0,8	- 107,3
wet manure ()	case 2	Close digestate	0,0	4,2	8,9	0,8	- 97,6	0,0	5,9	12,5	0,8	- 97,6
	coco 2	Open digestate	0,0	83,2	8,9	0,9	- 120,7	0,0	116,4	12,5	0,9	- 120,7
	case 3	Close digestate	0,0	4,6	8,9	0,8	- 108,5	0,0	6,4	12,5	0,8	- 108,5

(1) The values for biogas production from manure include negative emissions for emissions saved from raw manure management. The value of e_{sca} considered is equal to - 45 g CO₂eq/MJ manure used in anaerobic digestion.

L 328/192

EN

21.12.2018

				TYPICAI	. VALUE [g C	O ₂ eq/MJ]		DEFAULT VALUE [g CO ₂ eq/MJ]					
Biomass fuel product	tion system	Technology	Cultiva- tion	Processing	Non-CO ₂ emissions from the fuel in use	Transport	Manure credits	Cultiva- tion	Processing	Non-CO ₂ emissions from the fuel in use	Transport	Manure credits	2.2018
	caso 1	Open digestate	15,6	13,5	8,9	0,0 (²)	—	15,6	18,9	12,5	0,0	_	ΕN
	case 1	Close digestate	15,2	0,0	8,9	0,0	_	15,2	0,0	12,5	0,0	_	
Maize whole plant (1)	case)	Open digestate	15,6	18,8	8,9	0,0	_	15,6	26,3	12,5	0,0	_	
while whole plain ()	cuse 2	Close digestate	15,2	5,2	8,9	0,0	_	15,2	7,2	12,5	0,0	_	OIII
	caso 2	Open digestate	17,5	21,0	8,9	0,0	_	17,5	29,3	12,5	0,0	_	hai journ
	Case 9	Close digestate	17,1	5,7	8,9	0,0	_	17,1	7,9	12,5	0,0	_	al of the
	case 1	Open digestate	0,0	21,8	8,9	0,5	_	0,0	30,6	12,5	0,5	_	European
	cuse 1	Close digestate	0,0	0,0	8,9	0,5	—	0,0	0,0	12,5	0,5	_	
Biowaste	case 2	Open digestate	0,0	27,9	8,9	0,5	_	0,0	39,0	12,5	0,5	_	
Diowaste	cuse 2	Close digestate	0,0	5,9	8,9	0,5	_	0,0	8,3	12,5	0,5	_	
	case 3	Open digestate	0,0	31,2	8,9	0,5		0,0	43,7	12,5	0,5	_	
	cust J	Close digestate	0,0	6,5	8,9	0,5	—	0,0	9,1	12,5	0,5	_	F

(¹) Maize whole plant means maize harvested as fodder and ensiled for preservation.
 (²) Transport of agricultural raw materials to the transformation plant is, according to the methodology provided in the Commission's report of 25 February 2010 on sustainability requirements for the use of solid and gaseous biomass sources in electricity, heating and cooling, included in the 'cultivation' value. The value for transport of maize silage accounts for 0,4 g CO₂eq/MJ biogas.

L 328/193

21.12.2018

EN

Disaggregated default values for biomethane

			TYPICAL VALUE [g CO ₂ eq/MJ]							DEFAULT VALUE [g CO ₂ eq/MJ]					
Biomethane production system	Τe	echnological option	Cultiva- tion	Process- ing	Upgrad- ing	Trans- port	Compr- ession at filling station	Manure credits	Cultiva- tion	Process- ing	Upgrad- ing	Trans- port	Compr- ession at filling station	Manure credits	
Open diges-		no off-gas combustion	0,0	84,2	19,5	1,0	3,3	_ 124,4	0,0	117,9	27,3	1,0	4,6	_ 124,4	
Wat manura	/et manure	off-gas combustion	0,0	84,2	4,5	1,0	3,3	_ 124,4	0,0	117,9	6,3	1,0	4,6	_ 124,4	
wet manure	Close diges-	no off-gas combustion	0,0	3,2	19,5	0,9	3,3	_ 111,9	0,0	4,4	27,3	0,9	4,6	_ 111,9	
	tate	off-gas combustion	0,0	3,2	4,5	0,9	3,3	_ 111,9	0,0	4,4	6,3	0,9	4,6	111,9	
	Open diges-	no off-gas combustion	18,1	20,1	19,5	0,0	3,3	_	18,1	28,1	27,3	0,0	4,6		
	tate	off-gas combustion	18,1	20,1	4,5	0,0	3,3	_	18,1	28,1	6,3	0,0	4,6		
Maize whole plant	Close diges-	no off-gas combustion	17,6	4,3	19,5	0,0	3,3	_	17,6	6,0	27,3	0,0	4,6		
	tate	off-gas combustion	17,6	4,3	4,5	0,0	3,3	_	17,6	6,0	6,3	0,0	4,6	_	
	Open diges-	no off-gas combustion	0,0	30,6	19,5	0,6	3,3	_	0,0	42,8	27,3	0,6	4,6	_	
Distructo		off-gas combustion	0,0	30,6	4,5	0,6	3,3	_	0,0	42,8	6,3	0,6	4,6	_	
Biowaste Close diges-	no off-gas combustion	0,0	5,1	19,5	0,5	3,3		0,0	7,2	27,3	0,5	4,6	_		
tate		off-gas combustion	0,0	5,1	4,5	0,5	3,3		0,0	7,2	6,3	0,5	4,6	_	

L 328/194

21.12.2018 EN

L 328/195

D. TOTAL TYPICAL AND DEFAULT VALUES FOR BIOMASS FUEL PATHWAYS

Biomass fuel production system	Transport distance	Greenhouse gas emis- sions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emis- sions – default value (g CO ₂ eq/MJ)
	1 to 500 km	5	6
···· 11. 6 6 1	500 to 2 500 km	7	9
woodchips from forest residues	2 500 to 10 000 km	12	15
	Above 10 000 km	22	27
Woodchips from short rotation coppice (Eucalyptus)	2 500 to 10 000 km	2 500 to 10 000 km 16	
	1 to 500 km	8	9
Woodchips from short rotation	500 to 2 500 km	10	11
coppice (Poplar – Fertilised)	2 500 to 10 000 km	15	18
	Above 10 000 km	25	30
	1 to 500 km	6	7
Woodchips from short rotation	500 to 2 500 km	8	10
coppice (Poplar – No fertilisation)	2 500 to 10 000 km	14	16
	Above 10 000 km	24	28
	1 to 500 km	5	6
Weedshine from storywood	500 to 2 500 km	7	8
woodcnips from stemwood	2 500 to 10 000 km	12	15
	Above 10 000 km	22	27
	1 to 500 km	4	5
XX 11. C · 1 · · · 1	500 to 2 500 km	6	7
woodchips from industry residues	2 500 to 10 000 km	11	13
	Above 10 000 km	21	25
	1 to 500 km	29	35
Wood briquettes or pellets from forest residues (case 1)	500 to 2 500 km	29	35
	2 500 to 10 000 km	30	36
	Above 10 000 km	34	41
	1 to 500 km	16	19
Wood briquettes or pellets from	500 to 2 500 km	16	19
forest residues (case 2a)	2 500 to 10 000 km	17	21
	Above 10 000 km	21	25

L 328/196

EN

Biomass fuel production system	Transport distance	Greenhouse gas emis- sions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emis- sions – default value (g CO ₂ eq/MJ)
	1 to 500 km	6	7
Wood briggettes or pellets from	500 to 2 500 km	6	7
forest residues (case 3a)	2 500 to 10 000 km	7	8
	Above 10 000 km	11	13
Wood briquettes or pellets from short rotation coppice (Eucalyptus – case 1)	2 500 to 10 000 km	33	39
Wood briquettes or pellets from short rotation coppice (Eucalyptus – case 2a)	2 500 to 10 000 km	20	23
Wood briquettes or pellets from short rotation coppice (Eucalyptus – case 3a)	2 500 to 10 000 km	10	11
	1 to 500 km	31	37
Wood briquettes or pellets from short rotation coppice (Poplar –	500 to 10 000 km	32	38
retuised – case 1)	Above 10 000 km	36	43
Wood briquettes or pellets from short rotation coppice (Poplar – Fertilised – case 2a)	1 to 500 km	18	21
	500 to 10 000 km	20	23
	Above 10 000 km	23	27
	1 to 500 km	8	9
Wood briquettes or pellets from short rotation coppice (Poplar –	500 to 10 000 km	10	11
	Above 10 000 km	13	15
	1 to 500 km	30	35
Wood briquettes or pellets from short rotation coppice (Poplar – no fertilisation – case 1)	500 to 10 000 km	31	37
Termisation – case 1)	Above 10 000 km	35	41
	1 to 500 km	16	19
Wood briquettes or pellets from short rotation coppice (Poplar – no	500 to 10 000 km	18	21
ici misation – cast zaj	Above 10 000 km	21	25
	1 to 500 km	6	7
Wood briquettes or pellets from short rotation coppice (Poplar – no fertilisation – case 2a)	500 to 10 000 km	8	9
ici misation – case Jaj	Above 10 000 km	11	13

21.12.2018 EN

Official Journal of the European Union

Biomass fuel production system	Transport distance	Greenhouse gas emis- sions – typical value (g CO2eq/MJ)	Greenhouse gas emis- sions – default value (g CO ₂ eq/MJ)
	1 to 500 km	29	35
Wood briguettes or pellets from	500 to 2 500 km	29	34
stemwood (case 1)	2 500 to 10 000 km	30	36
	Above 10 000 km	34	41
	1 to 500 km	16	18
Wood briquettes or pellets from	500 to 2 500 km	15	18
stemwood (case 2a)	2 500 to 10 000 km	17	20
	Above 10 000 km	21	25
	1 to 500 km	5	6
Wood briguettes or pellets from	500 to 2 500 km	5	6
stemwood (case 3a)	2 500 to 10 000 km	7	8
	Above 10 000 km	11	12
	1 to 500 km	17	21
Wood briquettes or pellets from	500 to 2 500 km	17	21
wood industry residues (case 1)	2 500 to 10 000 km	19	23
	Above 10 000 km	22	27
	1 to 500 km	9	11
Wood briquettes or pellets from	500 to 2 500 km	9	11
wood industry residues (case 2a)	2 500 to 10 000 km	10	13
	Above 10 000 km	14	17
	1 to 500 km	3	4
Wood briquettes or pellets from	500 to 2 500 km	3	4
wood industry residues (case 3a)	2 500 to 10 000	5	6
	Above 10 000 km	8	10

Case 1 refers to processes in which a Natural Gas boiler is used to provide the process heat to the pellet mill. Process electricity is purchased from the grid.

Case 2a refers to processes in which a boiler fuelled with wood chips is used to provide the process heat to the pellet mill. Process electricity is purchased from the grid.

Case 3a refers to processes in which a CHP, fuelled with wood chips, is used to provide heat and electricity to the pellet mill.

L 328/198

EN

Official Journal of the European Union

Biomass fuel production system	Transport distance Greenhouse gas en sions – typical va (g CO ₂ eq/MJ)		Greenhouse gas emis- sions – default value (g CO ₂ eq/MJ)
	1 to 500 km	4	4
Agricultural Residues with density	500 to 2 500 km	8	9
$< 0,2 t/m^{3} (1)$	2 500 to 10 000 km	15	18
	Above 10 000 km	29	35
	1 to 500 km	4	4
Agricultural Residues with density	500 to 2 500 km	5	6
> 0,2 t/m ³ (²)	2 500 to 10 000 km	8	10
	Above 10 000 km	15	18
	1 to 500 km	8	10
Straw pellets	500 to 10 000 km	10	12
	Above 10 000 km	14	16
	500 to 10 000 km	5	6
Bagasse briquettes	Above 10 000 km	9	10
Palm Kernel Meal	Above 10 000 km	54	61
Palm Kernel Meal (no CH ₄ emissions from oil mill)	Above 10 000 km	37	40

Typical and default values - biogas for electricity

	Technological option		Typical value	Default value
Biogas production system			Greenhouse gas emissions (g CO ₂ eq/MJ)	Greenhouse gas emissions (g CO ₂ eq/MJ)
Biogas for electricity from wet manure	Case 1	Open digestate (3)	- 28	3
		Close digestate (4)	- 88	- 84
	Casa 2	Open digestate	- 23	10
	Case 2	Close digestate – 84		- 78
	Case 3	Open digestate	- 28	9
		Close digestate	- 94	- 89

⁽¹⁾ This group of materials includes agricultural residues with a low bulk density and it comprises materials such as straw bales, oat hulls, rice husks and sugar cane bagasse bales (not exhaustive list).

The group of agricultural residues with higher bulk density includes materials such as corn cobs, nut shells, soybean hulls, palm kernel shells (not exhaustive list). Open storage of digestate accounts for additional emissions of methane which change with the weather, the substrate and the $(^{2})$

^{(&}lt;sup>3</sup>) digestion efficiency. In these calculations the amounts are taken to be equal to 0,05 MJ $\check{C}H_4/MJ$ biogas for manure, 0,035 MJ $\check{C}H_4/MJ$ biogas for maize and 0,01 MJ CH_4/MJ biogas for biowaste. Close storage means that the digestate resulting from the digestion process is stored in a gas tight tank and the additional biogas

 $^(^{4})$ released during storage is considered to be recovered for production of additional electricity or biomethane.

21.12.2018

EN

Official Journal of the European Union

	Technological option		Typical value	Default value
Biogas production system			Greenhouse gas emissions (g CO ₂ eq/MJ)	Greenhouse gas emissions (g CO ₂ eq/MJ)
	Case 1	Open digestate	38	47
		Close digestate	24	28
Biogas for electricity from	Case 2	Open digestate	43	54
maize whole plant		Close digestate	29	35
	Case 3	Open digestate	47	59
		Close digestate	32	38
Biogas for electricity from biowaste	Case 1 Open digestate Close digestate	Open digestate	31	44
		9	13	
	C)	Open digestate	37	52
	Case 2 Close digestate		15	21
	Case 3	Open digestate	41	57
		Close digestate	16	22

Typical and default values for biomethane

Biomethane production system	Technological option	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
Biomethane from wet manure	Open digestate, no off-gas combustion (¹) - 20		22
	Open digestate, off-gas combustion (²)	- 35	1
	Close digestate, no off-gas combustion - 88		- 79
	Close digestate, off-gas combustion - 103		- 100
Biomethane from maize whole plant	Open digestate, no off-gas combustion	58	73
	Open digestate, off-gas combustion	43	52
	Close digestate, no off-gas combustion	41	51
	Close digestate, off-gas combustion	26	30

^{(&}lt;sup>1</sup>) This category includes the following categories of technologies for biogas upgrade to biomethane: Pressure Swing Adsorption (PSA), Pressure Water Scrubbing (PWS), Membranes, Cryogenic, and Organic Physical Scrubbing (OPS). It includes an emission of 0,03 MJ CH₄/MJ biomethane for the emission of methane in the off-gases.

CH₄/MJ biomethane for the emission of methane in the off-gases.
 (²) This category includes the following categories of technologies for biogas upgrade to biomethane: Pressure Water Scrubbing (PWS) when water is recycled, Pressure Swing Adsorption (PSA), Chemical Scrubbing, Organic Physical Scrubbing (OPS), Membranes and Cryogenic upgrading. No methane emissions are considered for this category (the methane in the off-gas is combusted, if any).

L 328/200

EN

Official Journal of the European Union

Biomethane production system	Technological option	Greenhouse gas emissions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emissions – default value (g CO ₂ eq/MJ)
Biomethane from biowaste	Open digestate, no off-gas 51		71
	Open digestate, off-gas combustion	36	50
	Close digestate, no off-gas combustion	25	35
	Close digestate, off-gas combustion	10	14

Typical and default values – biogas for electricity – mixtures of manure and maize: greenhouse gas emissions with shares given on a fresh mass basis

Biogas production system		Technological options	Greenhouse gas emis- sions – typical value (g CO ₂ eq/MJ)	Greenhouse gas emis- sions – default value (g CO ₂ eq/MJ)
	Case 1	Open digestate	17	33
		Close digestate	- 12	- 9
Manure – Maize		Open digestate	22	40
80 % - 20 %	Case 2	Close digestate	- 7	- 2
	Case 3	Open digestate	23	43
	Case	Close digestate	- 9	- 4
	Case 1	Open digestate	24	37
		Close digestate	0	3
Manure – Maize	Case 2	Open digestate	29	45
70 % - 30 %		Close digestate	4	10
	Case 3	Open digestate	31	48
		Close digestate	4	10
Manure – Maize 60 % - 40 %	Case 1	Open digestate	28	40
		Close digestate	7	11
	Case 2	Open digestate	33	47
		Close digestate	12	18
	Case 3	Open digestate	36	52
		Close digestate	12	18
21.12.2018 EN

Comments

Case 1 refers to pathways in which electricity and heat required in the process are supplied by the CHP engine itself.

Case 2 refers to pathways in which the electricity required in the process is taken from the grid and the process heat is supplied by the CHP engine itself. In some Member States, operators are not allowed to claim the gross production for subsidies and case 1 is the more likely configuration.

Case 3 refers to pathways in which the electricity required in the process is taken from the grid and the process heat is supplied by a biogas boiler. This case applies to some installations in which the CHP engine is not on-site and biogas is sold (but not upgraded to biomethane).

Typical and default values – biomethane - mixtures of manure and maize: greenhouse gas emissions with shares given on a fresh mass basis

Biomethane production system	Technological options	Typical value	Default value
		(g CO ₂ eq/MJ)	(g CO ₂ eq/MJ)
Manure – Maize 80 % - 20 %	Open digestate, no off-gas combustion	32	57
	Open digestate, off-gas combustion	17	36
	Close digestate, no off-gas combustion	- 1	9
	Close digestate, off-gas combustion	- 16	- 12
Manure – Maize 70 % - 30 %	Open digestate, no off-gas combustion	41	62
	Open digestate, off-gas combustion	26	41
	Close digestate, no off-gas combustion	13	22
	Close digestate, off-gas combustion	- 2	1
Manure – Maize 60 % - 40 %	Open digestate, no off-gas combustion	46	66
	Open digestate, off-gas combustion	31	45
	Close digestate, no off-gas combustion	22	31
	Close digestate, off-gas combustion	7	10

Where biomethane is used as Compressed Biomethane as a transport fuel, a value of $3.3 \text{ g CO}_2\text{eq/MJ}$ biomethane needs to be added to the typical values and a value of $4.6 \text{ g CO}_2\text{eq/MJ}$ biomethane to the default values.